Mechanisms of disease: DNA repair defects and neurological disease

Nat Clin Pract Neurol. 2007 Mar;3(3):162-72. doi: 10.1038/ncpneuro0448.

Abstract

In this Review, familial and sporadic neurological disorders reported to have an etiological link with DNA repair defects are discussed, with special emphasis placed on the molecular link between the disease phenotype and the precise DNA repair defect. Of the 15 neurological disorders listed, some of which have symptoms of progeria, six--spinocerebellar ataxia with axonal neuropathy-1, Huntington's disease, Alzheimer's disease, Parkinson's disease, Down syndrome and amyotrophic lateral sclerosis--seem to result from increased oxidative stress, and the inability of the base excision repair pathway to handle the damage to DNA that this induces. Five of the conditions (xeroderma pigmentosum, Cockayne's syndrome, trichothiodystrophy, Down syndrome, and triple-A syndrome) display a defect in the nucleotide excision repair pathway, four (Huntington's disease, various spinocerebellar ataxias, Friedreich's ataxia and myotonic dystrophy types 1 and 2) exhibit an unusual expansion of repeat sequences in DNA, and four (ataxia-telangiectasia, ataxia-telangiectasia-like disorder, Nijmegen breakage syndrome and Alzheimer's disease) exhibit defects in genes involved in repairing double-strand breaks. The current overall picture indicates that oxidative stress is a major causative factor in genomic instability in the brain, and that the nature of the resulting neurological phenotype depends on the pathway through which the instability is normally repaired.

Publication types

  • Review

MeSH terms

  • Animals
  • DNA Damage
  • DNA Repair
  • DNA Repair-Deficiency Disorders / genetics*
  • DNA Repair-Deficiency Disorders / physiopathology*
  • Humans
  • Nervous System Diseases / genetics*
  • Nervous System Diseases / physiopathology*