Amino acid 226 in the hemagglutinin of H9N2 influenza viruses determines cell tropism and replication in human airway epithelial cells

J Virol. 2007 May;81(10):5181-91. doi: 10.1128/JVI.02827-06. Epub 2007 Mar 7.

Abstract

Influenza A viruses of the H9N2 subtype are endemic in poultry in many Eurasian countries and have occasionally caused clinical respiratory diseases in humans. While some avian H9N2 viruses have glutamine (Q) at amino acid position 226 of the hemagglutinin (HA) receptor-binding site, an increasing number of isolates have leucine (L) at this position, which has been associated with the establishment of stable lineages of the H2 and H3 subtypes of viruses in humans. Little is known about the importance of this molecular trait in the infection of H9N2 viruses in humans. We show here that during the course of a single cycle of infection in human airway epithelial (HAE) cells cultured in vitro, the L-226-containing H9N2 viruses displayed human virus-like cell tropisms (preferentially infecting nonciliated cells) different from the tropisms showed by Q-226-containing H9N2 isolates (which infect both ciliated and nonciliated cells at ratios of 1:1 to 3:2) or other waterfowl viruses (which preferentially infect ciliated cells). During multiple cycles of replication in HAE cultures, L-226-containing H9N2 isolates grew consistently more efficiently and reached approximately 100-fold-higher peak titers than those containing Q-226, although peak titers were significantly lower than those induced by human H3N2 viruses. Our results suggest that the variation in residue 226 in the HA affects both cell tropism and replication of H9N2 viruses in HAE cells and may have implications for the abilities of these viruses to infect humans.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amino Acid Substitution*
  • Epithelial Cells / virology*
  • Hemagglutinin Glycoproteins, Influenza Virus / chemistry
  • Hemagglutinin Glycoproteins, Influenza Virus / genetics
  • Hemagglutinin Glycoproteins, Influenza Virus / physiology*
  • Humans
  • Immunohistochemistry
  • Influenza A Virus, H3N2 Subtype / physiology
  • Influenza A Virus, H9N2 Subtype / physiology*
  • Mutagenesis, Site-Directed
  • Respiratory Mucosa / cytology
  • Respiratory Mucosa / virology*
  • Viral Plaque Assay

Substances

  • Hemagglutinin Glycoproteins, Influenza Virus