Cytoskeletal dynamics of human erythrocyte
- PMID: 17360346
- PMCID: PMC1829243
- DOI: 10.1073/pnas.0700257104
Cytoskeletal dynamics of human erythrocyte
Abstract
The human erythrocyte (red blood cell, RBC) demonstrates extraordinary ability to undergo reversible large deformation and fluidity. Such mechanical response cannot be consistently rationalized on the basis of fixed connectivity of the cell cytoskeleton that comprises the spectrin molecular network tethered to phospholipid membrane. Active topological remodeling of spectrin network has been postulated, although detailed models of such dynamic reorganization are presently unavailable. Here we present a coarse-grained cytoskeletal dynamics simulation with breakable protein associations to elucidate the roles of shear stress, specific chemical agents, and thermal fluctuations in cytoskeleton remodeling. We demonstrate a clear solid-to-fluid transition depending on the metabolic energy influx. The solid network's plastic deformation also manifests creep and yield regimes depending on the strain rate. This cytoskeletal dynamics model offers a means to resolve long-standing questions regarding the reference state used in RBC elasticity theory for determining the equilibrium shape and deformation response. In addition, the simulations offer mechanistic insights into the onset of plasticity and void percolation in cytoskeleton. These phenomena may have implication for RBC membrane loss and shape change in the context of hereditary hemolytic disorders such as spherocytosis and elliptocytosis.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
Similar articles
-
Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte.Biophys J. 2005 May;88(5):3707-19. doi: 10.1529/biophysj.104.047332. Epub 2005 Mar 4. Biophys J. 2005. PMID: 15749778 Free PMC article.
-
Lipid bilayer and cytoskeletal interactions in a red blood cell.Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13356-61. doi: 10.1073/pnas.1311827110. Epub 2013 Jul 29. Proc Natl Acad Sci U S A. 2013. PMID: 23898181 Free PMC article.
-
MD/DPD Multiscale Framework for Predicting Morphology and Stresses of Red Blood Cells in Health and Disease.PLoS Comput Biol. 2016 Oct 28;12(10):e1005173. doi: 10.1371/journal.pcbi.1005173. eCollection 2016 Oct. PLoS Comput Biol. 2016. PMID: 27792725 Free PMC article.
-
[Disorders of the membrane skeleton of erythrocytes in hereditary spherocytosis and elliptocytosis: significance of the molecular defect for pathogenesis and clinical severity].Klin Padiatr. 1991 Jul-Aug;203(4):284-95. doi: 10.1055/s-2007-1025443. Klin Padiatr. 1991. PMID: 1942935 Review. German.
-
New insights into red cell network structure, elasticity, and spectrin unfolding--a current review.Cell Mol Biol Lett. 2001;6(3):593-606. Cell Mol Biol Lett. 2001. PMID: 11598637 Review.
Cited by
-
The periodic axon membrane skeleton leads to Na nanodomains but does not impact action potentials.Biophys J. 2022 Sep 20;121(18):3334-3344. doi: 10.1016/j.bpj.2022.08.027. Epub 2022 Aug 27. Biophys J. 2022. PMID: 36029000 Free PMC article.
-
Continuum modeling of a neuronal cell under blast loading.Acta Biomater. 2012 Sep;8(9):3360-71. doi: 10.1016/j.actbio.2012.04.039. Epub 2012 May 2. Acta Biomater. 2012. PMID: 22562014 Free PMC article.
-
Computational Biomechanics of Human Red Blood Cells in Hematological Disorders.J Biomech Eng. 2017 Feb 1;139(2):0210081-02100813. doi: 10.1115/1.4035120. J Biomech Eng. 2017. PMID: 27814430 Free PMC article. Review.
-
Erythrocyte membrane model with explicit description of the lipid bilayer and the spectrin network.Biophys J. 2014 Aug 5;107(3):642-653. doi: 10.1016/j.bpj.2014.06.031. Biophys J. 2014. PMID: 25099803 Free PMC article.
-
Microfluidic Obstacle Arrays Induce Large Reversible Shape Change in Red Blood Cells.Micromachines (Basel). 2021 Jun 30;12(7):783. doi: 10.3390/mi12070783. Micromachines (Basel). 2021. PMID: 34209413 Free PMC article.
References
-
- Bennett V. Annu Rev Biochem. 1985;54:273–304. - PubMed
-
- Mohandas N, Evans E. Annu Rev Biophys Biomol Struct. 1994;23:787–818. - PubMed
-
- An XL, Lecomte MC, Chasis JA, Mohandas N, Gratzer W. J Biol Chem. 2002;277:31796–31800. - PubMed
-
- Cloitre M, Borrega R, Leibler L. Phys Rev Lett. 2000;85:4819–4822. - PubMed
-
- Bursac P, Lenormand G, Fabry B, Oliver M, Weitz DA, Viasnoff V, Butler JP, Fredberg JJ. Nat Mater. 2005;4:557–561. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
