Application of chimeric mice with humanized liver for predictive ADME

Drug Metab Rev. 2007;39(1):145-57. doi: 10.1080/03602530601021340.


Much effort to extrapolate the in vivo pharmacokinetics of drugs in human from experimental animals or in vitro studies has been made by many researchers. A urokinase-type plasminogen activator+/+/severe combined immunodeficient transgenic mouse line, in which the liver could be replaced by more than 80% with human hepatocytes, was established recently in Japan. This chimeric mouse line is remarkable because the replacement is higher than any other chimeric mouse reported previously. Since the liver is the critical organ involved in the pharmacokinetics of drugs, human liver is essential for the development of new drugs. To predict the human drug metabolism and pharmacokinetics, human hepatocytes and liver microsomes are recognized as better tools and are frequently used. Thus, chimeric mice with humanized liver would have great advantages in studies on drug metabolism and pharmacokinetics. We have evaluated chimeric mice for studies on absorption, distribution, metabolism, and excretion (ADME). In the liver of the chimeric mice, human phase I and phase II enzymes were clarified to be expressed and to have a similar drug metabolizing capacity as the donor. Human specific metabolites could be detected in the serum, suggesting that the chimeric mice might be used as a human ADME model for both in vitro and in vivo studies. For predicting human drug interactions, enzyme induction and inhibition are serious problems. By the treatment with typical inducers, human CYP1A2 and CYP3A4 expressed in the liver of the chimeric mice had induction potencies. After the treatment with quinidine, a specific inhibitor of human CYP2D6, the area under the curve (AUC) of a CYP2D6 metabolite, 4'-hydroxydebrisoquin, was significantly decreased in the chimeric mice but not in the control mice. Therefore, it was indicated that the chimeric mice could be used for assessing the drug interactions via enzyme induction and inhibition. As well as drug metabolism, the drug excretion was demonstrated to be humanized because cefmetazole was mainly excreted in urine both in the chimeric mice and human but in feces in control uPA-/-/SCID mice. In this review, basic researches on ADME in the chimeric mice with humanized liver are summarized and the application of the chimeric mice for predictive ADME is proposed.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Hepatocytes / enzymology
  • Hepatocytes / transplantation
  • Humans
  • Liver / cytology
  • Liver / drug effects
  • Liver / metabolism*
  • Metabolic Detoxication, Phase I
  • Metabolic Detoxication, Phase II
  • Mice
  • Pharmaceutical Preparations / metabolism*
  • Transplantation Chimera / metabolism*
  • Xenobiotics / metabolism
  • Xenobiotics / pharmacokinetics*


  • Pharmaceutical Preparations
  • Xenobiotics