Arabidopsis nucleolin affects plant development and patterning

Plant Physiol. 2007 May;144(1):173-86. doi: 10.1104/pp.106.093575. Epub 2007 Mar 16.

Abstract

Nucleolin is a major nucleolar protein implicated in many aspects of ribosomal biogenesis, including early events such as processing of the large 35S preribosomal RNA. We found that the Arabidopsis (Arabidopsis thaliana) parallel1 (parl1) mutant, originally identified by its aberrant leaf venation, corresponds to the Arabidopsis nucleolin gene. parl1 mutants display parallel leaf venation, aberrant localization of the provascular marker Athb8:beta-glucuronidase, the auxin-sensitive reporter DR5:beta-glucuronidase, and auxin-dependent growth defects. PARL1 is highly similar to the yeast (Saccharomyces cerevisiae) nucleolin NUCLEAR SIGNAL RECOGNITION 1 (NSR1) multifunctional protein; the Arabidopsis PARL1 gene can rescue growth defects of yeast nsr1 null mutants. This suggests that PARL1 protein may have roles similar to those of the yeast nucleolin in nuclear signal recognition, ribosomal processing, and ribosomal subunit accumulation. Based on the range of auxin-related defects in parl1 mutants, we propose that auxin-dependent organ growth and patterning is highly sensitive to the efficiency of nucleolin-dependent ribosomal processing.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Arabidopsis / drug effects
  • Arabidopsis / growth & development*
  • Arabidopsis / metabolism
  • Arabidopsis Proteins / analysis
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / physiology*
  • Biological Transport
  • Body Patterning / genetics
  • Cell Nucleus / metabolism
  • Cloning, Molecular
  • Indoleacetic Acids / pharmacology
  • Mutation
  • Nuclear Proteins / chemistry
  • Nuclear Proteins / genetics
  • Phthalimides / pharmacology
  • Phylogeny
  • Plant Growth Regulators / pharmacology
  • Plant Leaves / drug effects
  • Plant Leaves / growth & development
  • Plant Leaves / metabolism
  • RNA Precursors / metabolism
  • RNA-Binding Proteins / analysis
  • RNA-Binding Proteins / chemistry
  • RNA-Binding Proteins / genetics
  • RNA-Binding Proteins / physiology*
  • Saccharomyces cerevisiae Proteins / chemistry
  • Saccharomyces cerevisiae Proteins / genetics
  • Seedlings / genetics
  • Seedlings / growth & development
  • Seedlings / metabolism

Substances

  • Arabidopsis Proteins
  • Indoleacetic Acids
  • NSR1 protein, S cerevisiae
  • NUC-L1 protein, Arabidopsis
  • Nuclear Proteins
  • Phthalimides
  • Plant Growth Regulators
  • RNA Precursors
  • RNA-Binding Proteins
  • Saccharomyces cerevisiae Proteins
  • alpha-naphthylphthalamic acid