Complexity curve and grey level co-occurrence matrix in the texture evaluation of breast tumor on ultrasound images

Med Phys. 2007 Feb;34(2):379-87. doi: 10.1118/1.2401039.

Abstract

This work aims at investigating texture parameters in distinguishing malign and benign breast tumors on ultrasound images. A rectangular region of interest (ROI) containing the tumor and its neighboring was defined for each image. Five parameters were extracted from the complexity curve (CC) of the ROI. Another five parameters were calculated from the grey-level co-occurrence matrix (GLCM) also for the ROI. The same was carried out for internal tumor region, hence, totaling 20 parameters. The linear discriminant analysis was applied to sets of up to five parameters and then the performances were assessed. The most relevant individual parameters were the contrast (con) (from the GLCM over the ROI) and the maximum value (mvi) from the CC just for the tumor internal region). When they were taken together, a correct classification slightly over 80% of the breast tumors was achieved. The highest performance (accuracy=84.2%, sensitivity=87.0%, and specificity=78.8%) was obtained with mvi, con, the standard deviation of the pixel pairs and the entropy, both for GLCM, and the internal region contrast also from GLCM. Parameters extracted from the internal region generally performed better and were more significant than those from the ROI. Moreover, parameters calculated only from CC or GLCM resulted in no statistically significant performance difference. These findings suggest that the texture parameters can be useful to help radiologist in distinguishing between benign or malign breast tumors on ultrasound images.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Artificial Intelligence*
  • Breast Neoplasms / diagnostic imaging*
  • Discriminant Analysis
  • Female
  • Humans
  • Image Enhancement / methods*
  • Image Interpretation, Computer-Assisted / methods*
  • Pattern Recognition, Automated / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Ultrasonography / methods*