Enhancement of vascular permeability with low-frequency contrast-enhanced ultrasound in the chorioallantoic membrane model

Radiology. 2007 Apr;243(1):112-21. doi: 10.1148/radiol.2431060167.

Abstract

Purpose: To characterize the effect of low-frequency contrast material-enhanced ultrasound on the vascular endothelium and to determine the parameters and techniques required to deliver a therapeutic agent by using the chorioallantoic membrane (CAM) model.

Materials and methods: All in vivo animal procedures were conducted with institutional Animal Care and Use Committee approval. Extravasation of 8.5-nm-diameter fluorescein isothiocyanate-labeled dextran was evaluated in the vasculature of a chick CAM model. Intravital microscopy was performed during contrast-enhanced ultrasound exposure (1.00 or 2.25 MHz); results were compared with results of electron microscopy of the insonated regions. Data acquired after insonation with greater mechanical stress (n = 30 animals) (mechanical index [MI] > 1.3) and with lower mechanical stress (n = 86 animals) (MI < 1.13) were compared with measurements in control conditions (n = 46 animals). The diameter of affected vessels; number of extravasation sites; extravasation rate, area, and location; and changes in endothelial cells and basement membrane were evaluated. Differences were tested with analysis of variance or the Student t test.

Results: After ultrasound application, convective transport of the model drug was observed through micron-sized openings with a mean fluid velocity of 188.6 microm/sec in the low-stress class and 362.5 microm/sec in the high-stress class. Electron microscopy revealed micron-sized focal endothelial gaps and disseminated blebs, vacuoles, and filopodia extending across tens of microns. The threshold pressure for extravasation was 0.5 MPa for a transmitted center frequency of 1.00 MHz (MI = 0.5) and 1.6 MPa for a frequency of 2.25 MHz (MI = 1.06); thus, the frequency dependence of the threshold was not predicted simply by the MI.

Conclusion: Low-frequency contrast-enhanced ultrasound can increase vascular permeability and result in convective extravasation of an 8.5-nm-diameter model drug.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Biological Transport
  • Capillary Permeability / physiology
  • Chick Embryo
  • Chorioallantoic Membrane / blood supply
  • Chorioallantoic Membrane / diagnostic imaging*
  • Contrast Media / pharmacokinetics*
  • Contrast Media / pharmacology
  • Dextrans / pharmacokinetics*
  • Dextrans / pharmacology
  • Endothelium, Vascular / diagnostic imaging*
  • Endothelium, Vascular / drug effects
  • Extravasation of Diagnostic and Therapeutic Materials
  • Finite Element Analysis
  • Fluorescein-5-isothiocyanate / analogs & derivatives*
  • Fluorescein-5-isothiocyanate / pharmacokinetics
  • Fluorescein-5-isothiocyanate / pharmacology
  • Microbubbles
  • Microscopy, Electron
  • Models, Animal
  • Pressure
  • Stress, Mechanical
  • Ultrasonography / adverse effects

Substances

  • Contrast Media
  • Dextrans
  • fluorescein isothiocyanate dextran
  • Fluorescein-5-isothiocyanate