Functional amyloid--from bacteria to humans

Trends Biochem Sci. 2007 May;32(5):217-24. doi: 10.1016/j.tibs.2007.03.003. Epub 2007 Apr 6.


Amyloid--a fibrillar, cross beta-sheet quaternary structure--was first discovered in the context of human disease and tissue damage, and was thought to always be detrimental to the host. Recent studies have identified amyloid fibers in bacteria, fungi, insects, invertebrates and humans that are functional. For example, human Pmel17 has important roles in the biosynthesis of the pigment melanin, and the factor XII protein of the hemostatic system is activated by amyloid. Functional amyloidogenesis in these systems requires tight regulation to avoid toxicity. A greater understanding of the diverse physiological applications of this fold has the potential to provide a fresh perspective for the treatment of amyloid diseases.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Amyloid / chemistry
  • Amyloid / metabolism*
  • Amyloid / physiology
  • Animals
  • Bacteria / metabolism*
  • Fungi / metabolism
  • Hemostasis / physiology
  • Humans
  • Melanins / biosynthesis
  • Models, Biological
  • Protein Conformation


  • Amyloid
  • Melanins