Cellular engineering

Ann Biomed Eng. 1991;19(5):529-45. doi: 10.1007/BF02367396.

Abstract

Cellular engineering applies the principles and methods of engineering to the problems of cell and molecular biology of both a basic and applied nature. As biomedical engineering has shifted from the organ and tissue level to the cellular and sub-cellular level, cellular engineering has emerged as a new area. A cornerstone of much of this activity is cell culture technology, i.e., the ability to grow living cells in the artificial environment of a laboratory. Cellular engineering includes the role of engineering in both basic cell biology research and in the making of products which use living cells, e.g., tissue engineering and bioprocess engineering. The former involves the use of living cells in the development of biological substitutes for the restoration or replacement of function, and the latter the use of living cells to manufacture a biochemical product, e.g., through the use of recombinant DNA technology. In fact, as biomedical engineering has expanded to include the cellular level, and bioprocess engineering has shifted in interest from microbial organisms to include mammalian cells, there are intellectual issues in which an interest is shared by these two formerly separate areas of engineering activity. Cellular engineering thus transcends the field of biomedical engineering.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Biomedical Engineering*
  • Cells, Cultured
  • Models, Biological*
  • Molecular Biology