Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Jul 1;157(1):55-64.
doi: 10.1016/j.resp.2007.02.013. Epub 2007 Feb 20.

TASK-like potassium channels and oxygen sensing in the carotid body

Affiliations
Review

TASK-like potassium channels and oxygen sensing in the carotid body

Keith J Buckler. Respir Physiol Neurobiol. .

Abstract

Chemosensing by type-1 cells of the carotid body involves a series of events which culminate in the calcium-dependent secretion of neurotransmitter substances which then excite afferent nerves. This response is mediated via membrane depolarisation and voltage-gated calcium entry. Studies utilising isolated cells indicates that the membrane depolarisation in response to hypoxia, and acidosis, appears to be primarily mediated via the inhibition of a background K(+)-current. The pharmacological and biophysical characteristics of these channels suggest that they are probably closely related to the TASK subfamily of tandem-P-domain K(+)-channels. Indeed they show greatest similarity to TASK-1 and -3. In addition to being sensitive to hypoxia and acidosis, the background K(+)-channels of the type-1 cell are also remarkably sensitive to inhibition of mitochondrial energy metabolism. Metabolic poisons are known potent stimulants of the carotid body and cause membrane depolarisation of type-1 cells. In the presence of metabolic inhibitors hypoxic sensitivity is lost suggesting that oxygen sensing may itself be mediated via depression of mitochondrial energy production. Thus these TASK-like background channels play a central role in mediating the chemotransduction of several different stimuli within the type-1 cell. The mechanisms by which metabolic/oxygen sensitivity might be conferred upon these channels are briefly discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources