Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 4 (4), e122

Signature-based Small Molecule Screening Identifies Cytosine Arabinoside as an EWS/FLI Modulator in Ewing Sarcoma

Affiliations

Signature-based Small Molecule Screening Identifies Cytosine Arabinoside as an EWS/FLI Modulator in Ewing Sarcoma

Kimberly Stegmaier et al. PLoS Med.

Abstract

Background: The presence of tumor-specific mutations in the cancer genome represents a potential opportunity for pharmacologic intervention to therapeutic benefit. Unfortunately, many classes of oncoproteins (e.g., transcription factors) are not amenable to conventional small-molecule screening. Despite the identification of tumor-specific somatic mutations, most cancer therapy still utilizes nonspecific, cytotoxic drugs. One illustrative example is the treatment of Ewing sarcoma. Although the EWS/FLI oncoprotein, present in the vast majority of Ewing tumors, was characterized over ten years ago, it has never been exploited as a target of therapy. Previously, this target has been intractable to modulation with traditional small-molecule library screening approaches. Here we describe a gene expression-based approach to identify compounds that induce a signature of EWS/FLI attenuation. We hypothesize that screening small-molecule libraries highly enriched for FDA-approved drugs will provide a more rapid path to clinical application.

Methods and findings: A gene expression signature for the EWS/FLI off state was determined with microarray expression profiling of Ewing sarcoma cell lines with EWS/FLI-directed RNA interference. A small-molecule library enriched for FDA-approved drugs was screened with a high-throughput, ligation-mediated amplification assay with a fluorescent, bead-based detection. Screening identified cytosine arabinoside (ARA-C) as a modulator of EWS/FLI. ARA-C reduced EWS/FLI protein abundance and accordingly diminished cell viability and transformation and abrogated tumor growth in a xenograft model. Given the poor outcomes of many patients with Ewing sarcoma and the well-established ARA-C safety profile, clinical trials testing ARA-C are warranted.

Conclusions: We demonstrate that a gene expression-based approach to small-molecule library screening can identify, for rapid clinical testing, candidate drugs that modulate previously intractable targets. Furthermore, this is a generic approach that can, in principle, be applied to the identification of modulators of any tumor-associated oncoprotein in the rare pediatric malignancies, but also in the more common adult cancers.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. EWS/FLI Off Marker Gene Selection
(A) EWS/FLI Western blot analysis with anti-FLI antibody confirms reduction in protein levels with infection of the A673 Ewing sarcoma cell line with retrovirus containing an shRNA construct directed against EWS/FLI (EF-2-RNAi) compared to a control with RNAi directed against EWS/ERG (ERG-RNAi) which is not expressed in A673 cells. Actin is shown as a loading control. (B) Gene expression profiling was performed with shRNA designed against a luciferase control (four replicates) and in duplicate against two different shRNA constructs against EWS/FLI. Using the signal-to-noise ratio, the genes distinguishing luciferase from EWS/FLI directed RNAi were identified and then prioritized for a fold change of at least 2.5 and a baseline level of expression less than 25 in one of the states. These genes were then evaluated in an inducible EWS/FLI rescue system. Exogenous EWS/FLI was induced over 72 h in A673 cells with EWS/FLI knockdown by shRNA, and samples evaluated in duplicate at multiple time points. The EWS/FLI off signature genes are shown in the heat map. Samples are shown in columns and genes in rows. Blue represents poorly expressed genes, and red depicts highly expressed genes.
Figure 2
Figure 2. GE-HTS Identifies ARA-C as the Top Hit Inducing an EWF/FLI Off Signature
(A) GE-HTS utilizes LMA with fluorescent microsphere detection of PCR amplicons. Cells are lysed, and lysate transferred to a 384-well plate coated in oligo-dT. Reverse transcription is performed and then probes hybridized to the cDNA. The upstream probe contains a universal T7 sequence, barcode capture sequence (B.C.), and gene-specific sequence (G.S.S.). The downstream probe contains gene-specific sequence and T3 universal sequence. The probes are then ligated and PCR performed with a universal, biotinylated T7 primer (FT7b) and a universal T3 primer (RT3). Amplicons are captured with fluorescent microspheres coupled to capture probes containing sequence complementary to the barcode capture sequence (C.B.C). Amplicons are stained with streptavidin-phycoerythrin (SA-PE) and then quantified with dual color flow cytometry. Bead color is used to identify each gene, and the amount of phycoerythrin fluorescence measures the quantity of transcript. (B) Distribution of the summed score for the EWS/FLI off marker genes is shown. Gray indicates the distribution for the A673 vehicle control samples, black indicates the distribution for the EWS/FLI shRNA controls (EF-2-RNAi), and red for the 1,040 compounds screened in triplicate. The black arrows indicate the location of each of the replicates of ARA-C treatment within the distribution. (C) GSEA results for the set of EWS/FLI shRNA up-regulated genes confirmed in the inducible EWS/FLI dataset (66 genes) tested at 3 and 5 d at the EC50 for ARA-C (170 nM), puromycin (90 nM), and doxorubicin (60 nM). The running enrichment score, generated by the markers after they have been ordered with the phenotype of interest, is shown in red. The position of the genes in the gene set is shown as a blue line (“hits”). The ranking scores for the genes are shown in gray. The amount of enrichment is estimated by the maximum deviation from zero of the enrichment score, and statistical significance was determined using permutation testing (2,500 permutations).
Figure 3
Figure 3. ARA-C Decreases EWS/FLI Protein Levels But Not Transcript
(A) Real-time reverse transcriptase-PCR reveals increase in EWS/FLI transcript. EWS/FLI transcript was detected after ARA-C at the 3-d EC50 (170 nM) and 2-fold and 4-fold above. EWS/FLI expression is depicted relative to vehicle treated parental A673 cells. Error bars show the standard deviation across three replicates. (B) Western blot analysis with anti-FLI antibody confirms a marked reduction in protein levels with treatment of the A673 Ewing sarcoma cell line with ARA-C at 48 and 72 h at the 3-d ARA-C EC50 (170 nM), and 2-fold and 4-fold above (340 and 680 nM, respectively). Actin is shown as a loading control. (C) Western blot analysis with anti-FLI antibody confirms no reduction in EWS/FLI protein with 3 d of puromycin treatment at the 3-d EC50 (90 nM) or 2-fold above. With doxorubicin, there is a reduction in EWS/FLI protein levels with 3-d treatment at the 3-d EC50 (60 nM) and 2-fold above (120 nM). Actin is shown as a loading control.
Figure 4
Figure 4. ARA-C Inhibits Cell Viability and Induces Cell Death
(A) Four different Ewing sarcoma cell lines expressing the EWS/FLI translocation were treated with ARA-C in a dose-response series for 6 d. Cell viability was evaluated with an ATP-based assay and plotted relative to control cells. Error bars show standard deviation across four replicates. (B) A673 cells were treated with vehicle (negative control) or puromycin (positive control) or ARA-C at 170, 340, and 680 nM for 3 d, stained with annexin V-FITC and propidium iodine, and evaluated by flow cytometry. Increasing doses of ARA-C induced increased annexin V-positive cells consistent with apoptosis. (C) We treated four different carcinoma cell lines with ARA-C in a dose–response series for 6 d. Cell viability was evaluated with an ATP-based assay and plotted relative to control cells. Error bars show standard deviation across four replicates.
Figure 5
Figure 5. ARA-C Abrogates Anchorage-Independent Growth, a Hallmark of Oncogenic Transformation
(A) ARA-C at 30 nM attenuates anchorage-independent growth as assessed by a soft agar assay and abrogates it at 60 nM as does shRNA against the EWS/FLI translocation. (B) ARA-C at 30 and 60 nM dosing decreases mean cumulative population doubling time by only 18% and 32%, respectively, at day 15. Error bars show the standard deviation across three replicates.
Figure 6
Figure 6. In vivo Efficacy of ARA-C in a Mouse Model of Ewing Sarcoma
(A) A673-Luciferase-positive xenografts were established for 2–3 wk in NCr nude mice, with tumor burden monitored by bioluminescence imaging. Mice with logarithmically growing tumors were treated with intraperitoneal injection of ARA-C at 50 mg/kg daily for four doses or vehicle control. In both a pilot experiment A: and a larger study with cohorts of nine mice in each group B: control mice continued to have logarithmic tumor growth, necessitating sacrifice within 1 wk of starting treatments. By comparison, ARA-C-treated mice had stable disease or tumor regression with seven of nine animals showing regression. (B) Arrows indicate days of drug dosing, and the asterisk indicates p < 0.05 by Student's t-test (two-tailed assuming samples with equal variance). Error bars show the standard deviation across nine replicates. Bioluminescence was measured as photonic flux through standardized regions of interest (photons per second per region of interest), which did not include reflected light along the left flank (e.g., right animal in part [A] at day 17 of ARA-C treatment).

Similar articles

See all similar articles

Cited by 59 articles

See all "Cited by" articles

References

    1. Shapiro DN, Sublett JE, Li B, Downing JR, Naeve CW. Fusion of PAX3 to a member of the forkhead family of transcription factors in human alveolar rhabdomyosarcoma. Cancer Res. 1993;53:5108–5112. - PubMed
    1. Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature. 1992;359:162–165. - PubMed
    1. Knezevich SR, McFadden DE, Tao W, Lim JF, Sorensen PH. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet. 1998;18:184–187. - PubMed
    1. Delattre O, Zucman J, Melot T, Garau XS, Zucker JM, et al. The Ewing family of tumors—A subgroup of small-round-cell tumors defined by specific chimeric transcripts. N Engl J Med. 1994;331:294–299. - PubMed
    1. May WA, Lessnick SL, Braun BS, Klemsz M, Lewis BC, et al. The Ewing's sarcoma EWS/FLI-1 fusion gene encodes a more potent transcriptional activator and is a more powerful transforming gene than FLI-1. Mol Cell Biol. 1993;13:7393–7398. - PMC - PubMed

Publication types

MeSH terms

Feedback