Impact of exercise capacity on myocardial high-energy phosphate metabolism

Int J Sports Med. 2007 Aug;28(8):667-72. doi: 10.1055/s-2007-964862. Epub 2007 Apr 23.

Abstract

31-Phosphorous magnetic resonance spectroscopy (31P MRS) is a unique tool to investigate IN VIVO high-energy phosphates (HEP) in the human heart. We hypothesized that physical capacity may be associated with myocardial HEP status. Healthy, male volunteers (n = 105, mean age 51 +/- 7 years) underwent bicycle ergometry with a stepwise increasing workload to determine maximal working capacity (MWC). Heart rate (HR) and blood pressure (BP) were measured continuously during exercise and 4 minutes of recovery. Further 31-Phosphorous 2-dimensional chemical shift imaging (31P 2D CSI) MRS was performed to assess myocardial HEP metabolism by determining phosphocreatinine to beta-ATP ratios (PCr/b-ATP) using a 1.5 tesla scanner. Volunteers with MWC > 230 Watt had significantly higher PCr/b-ATP ratios than those with MWC < 200 Watt (1.93 +/- 0.36 vs. 1.59 +/- 0.35; p < 0.001). Additionally, those with a recovery systolic (S)BP < 195 mmHg had significantly higher ratios than those with a recovery SBP > 195 mmHg (1.74 +/- 0.3 vs. 1.51 +/- 0.2; p < 0.05). We observed a linear correlation between the PCr/b-ATP ratio and MWC (r = 0.411; p < 0.001) and recovery SBP (r = - 0.290; p < 0.01). After statistical correction for age, these correlations remained significant. In this study, we observed a correlation of parameters of physical fitness determined by bicycle exercise testing and cardiac PCr/b-ATP ratios.

MeSH terms

  • Adult
  • Austria
  • Exercise / physiology*
  • Exercise Test
  • Humans
  • Magnetic Resonance Spectroscopy*
  • Male
  • Middle Aged
  • Myocardium / metabolism*
  • Phosphocreatine / metabolism*

Substances

  • Phosphocreatine