N'-(alpha-aminoacyl)- and N'-alpha-(N-alkylamino)acyl derivatives of vancomycin and eremomycin. II. Antibacterial activity of N'-(alpha-aminoacyl)- and N'-alpha-(N-alkylamino)acyl derivatives of vancomycin and eremomycin

J Antibiot (Tokyo). 2007 Apr;60(4):245-50. doi: 10.1038/ja.2007.29.

Abstract

The antibacterial activities of the series of novel N'-(alpha-aminoacyl)- and N'-alpha-(N-akylamino)acyl derivatives of eremomycin and vancomycin containing hydrophobic moieties have been investigated. The N'-(N-alkylglycyl) derivatives of vancomycin are more active against vancomycin-susceptible staphylococci and enterococci and glycopeptide intermediate-resistant Staphylococcus aureus (GISA) than the corresponding eremomycin derivatives, but except for N'-[N-(p-octyloxybenzyl)glycyl-vancomycin] (28) and N'-[N-(p-octyloxybenzyl)-L-alanyl-vancomycin (33)--they are less active against glycopeptide-resistant enterococci (GRE). Derivatives 28 and 33 are the most active compounds (MIC's for glycopeptide-sensitive staphylococci and enterococci are 0.25 approximately 1 microg/ml, for GISA 1 approximately 2 microg/ml, for GRE 2 approximately 6 microg/ml). In in vivo studies, derivative 28 was active against S. aureus infections in mice with ED(50) 1 mg/kg versus 2 mg/kg for vancomycin (iv). In general N'-(N-alkylglycyl)-derivatives of vancomycin and eremomycin were more active than the corresponding N'-aminoacylated derivatives of these antibiotics containing other than glycin amino acids (L-Lys, L-Met, L-Orn, L- and D-Ala) and also L- and D-Phe or benzyl-O-L-Tyr.

MeSH terms

  • Anti-Bacterial Agents / pharmacology*
  • Enterococcus faecalis / drug effects
  • Escherichia coli / drug effects
  • Glycopeptides / chemistry
  • Glycopeptides / pharmacology*
  • Microbial Sensitivity Tests
  • Staphylococcus aureus / drug effects
  • Vancomycin / analogs & derivatives*
  • Vancomycin / chemistry
  • Vancomycin / pharmacology*

Substances

  • Anti-Bacterial Agents
  • Glycopeptides
  • eremomycin
  • Vancomycin