Charge decomposition analysis of the electron localizability indicator: a bridge between the orbital and direct space representation of the chemical bond

Chemistry. 2007;13(20):5724-41. doi: 10.1002/chem.200700013.

Abstract

The novel functional electron localizability indicator is a useful tool for investigating chemical bonding in molecules and solids. In contrast to the traditional electron localization function (ELF), the electron localizability indicator is shown to be exactly decomposable into partial orbital contributions even though it displays at the single-determinantal level of theory the same topology as the ELF. This approach is generally valid for molecules and crystals at either the single-determinantal or the explicitly correlated level of theory. The advantages of the new approach are illustrated for the argon atom, homonuclear dimers N2 and F2, unsaturated hydrocarbons C2H4 and C6H6, and the transition-metal-containing molecules Sc(2)2+ and TiF4.