Revisiting carbon flux through the ocean's twilight zone

Science. 2007 Apr 27;316(5824):567-70. doi: 10.1126/science.1137959.

Abstract

The oceanic biological pump drives sequestration of carbon dioxide in the deep sea via sinking particles. Rapid biological consumption and remineralization of carbon in the "twilight zone" (depths between the euphotic zone and 1000 meters) reduce the efficiency of sequestration. By using neutrally buoyant sediment traps to sample this chronically understudied realm, we measured a transfer efficiency of sinking particulate organic carbon between 150 and 500 meters of 20 and 50% at two contrasting sites. This large variability in transfer efficiency is poorly represented in biogeochemical models. If applied globally, this is equivalent to a difference in carbon sequestration of more than 3 petagrams of carbon per year.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Carbon Dioxide
  • Carbon* / metabolism
  • Copepoda / physiology
  • Ecosystem*
  • Food Chain
  • Geologic Sediments / chemistry
  • Hydrogen-Ion Concentration
  • Pacific Ocean
  • Phytoplankton / physiology
  • Seawater* / chemistry
  • Zooplankton / physiology

Substances

  • Carbon Dioxide
  • Carbon