Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 May;17(5):458-70.
doi: 10.1038/cr.2007.37.

The Arabidopsis Spontaneous Cell Death1 gene, encoding a zeta-carotene desaturase essential for carotenoid biosynthesis, is involved in chloroplast development, photoprotection and retrograde signalling

Affiliations

The Arabidopsis Spontaneous Cell Death1 gene, encoding a zeta-carotene desaturase essential for carotenoid biosynthesis, is involved in chloroplast development, photoprotection and retrograde signalling

Haili Dong et al. Cell Res. 2007 May.

Erratum in

  • Cell Res. 2007 Jun;17(6):575

Abstract

Carotenoids, a class of natural pigments found in all photosynthetic organisms, are involved in a variety of physiological processes, including coloration, photoprotection, biosynthesis of abscisic acid (ABA) and chloroplast biogenesis. Although carotenoid biosynthesis has been well studied biochemically, the genetic basis of the pathway is not well understood. Here, we report the characterization of two allelic Arabidopsis mutants, spontaneous cell death1-1 (spc1-1) and spc1-2. The weak allele spc1-1 mutant showed characteristics of bleached leaves, accumulation of superoxide and mosaic cell death. The strong mutant allele spc1-2 caused a complete arrest of plant growth and development shortly after germination, leading to a seedling-lethal phenotype. Genetic and molecular analyses indicated that SPC1 encodes a putative zeta-carotene desaturase (ZDS) in the carotenoid biosynthesis pathway. Analysis of carotenoids revealed that several major carotenoid compounds downstream of SPC1/ZDS were substantially reduced in spc1-1, suggesting that SPC1 is a functional ZDS. Consistent with the downregulated expression of CAO and PORB, the chlorophyll content was decreased in spc1-1 plants. In addition, expression of Lhcb1.1, Lhcb1.4 and RbcS was absent in spc1-2, suggesting the possible involvement of carotenoids in the plastid-to-nucleus retrograde signaling. The spc1-1 mutant also displays an ABA-deficient phenotype that can be partially rescued by the externally supplied phytohormone. These results suggest that SPC1/ZDS is essential for biosynthesis of carotenoids and plays a crucial role in plant growth and development.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources