Modulation of estrogen receptor alpha protein level and survival function by DBC-1

Mol Endocrinol. 2007 Jul;21(7):1526-36. doi: 10.1210/me.2007-0064. Epub 2007 May 1.

Abstract

Acquired resistance to endocrine therapy represents a major clinical obstacle to the successful management of estrogen-dependent breast cancers expressing estrogen receptor alpha (ERalpha). Because a switch from ligand-dependent to ligand-independent activation of ERalpha-regulated breast cancer cell growth and survival may define a path to endocrine resistance, enhanced mechanistic insight concerning the ligand-independent fate and function of ERalpha, including a more complete inventory of its ligand-independent cofactors, could identify novel markers of endocrine resistance and possible targets for therapeutic intervention in breast cancer. Here, we identify the deleted in breast cancer 1 gene product DBC-1 (KIAA1967) to be a principal determinant of unliganded ERalpha expression and survival function in human breast cancer cells. The DBC-1 amino terminus binds directly to the ERalpha hormone-binding domain both in vitro and in vivo in a strict ligand-independent manner. Furthermore, like estrogen, the antiestrogens tamoxifen and ICI 182,780 (7alpha,17beta-[9-[(4,4,5,5,5-pentafluoropentyl)sulfinyl]nonyl]estra-1,3,5(10)-triene-3,17-diol) disrupt the DBC-1/ERalpha interaction, thus revealing the DBC-1/ERalpha interface to be a heretofore-unrecognized target of endocrine compounds commonly used in hormonal therapy. Notably, RNA interference-mediated DBC-1 depletion reduces the steady-state level of unliganded but not liganded ERalpha protein, suggesting that DBC-1 may stabilize unliganded ERalpha by virtue of their direct association. Finally, DBC-1 depletion promotes hormone-independent apoptosis of ERalpha-positive, but not ERalpha-negative, breast cancer cells in a manner reversible by endocrine agents that disrupt the DBC-1/ERalpha interaction. Collectively, these findings establish a principal biological function for DBC-1 in the modulation of ERalpha expression and hormone-independent breast cancer cell survival.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adaptor Proteins, Signal Transducing / antagonists & inhibitors
  • Adaptor Proteins, Signal Transducing / chemistry
  • Adaptor Proteins, Signal Transducing / genetics
  • Adaptor Proteins, Signal Transducing / metabolism*
  • Base Sequence
  • Binding Sites
  • Breast Neoplasms / drug therapy
  • Breast Neoplasms / genetics
  • Breast Neoplasms / metabolism
  • Breast Neoplasms / pathology
  • Cell Line, Tumor
  • Cell Survival
  • DNA Primers / genetics
  • Estrogen Receptor Modulators / pharmacology
  • Estrogen Receptor alpha / chemistry
  • Estrogen Receptor alpha / metabolism*
  • Female
  • HeLa Cells
  • Humans
  • Ligands
  • Neoplasm Proteins / antagonists & inhibitors
  • Neoplasm Proteins / chemistry
  • Neoplasm Proteins / genetics
  • Neoplasm Proteins / metabolism
  • Protein Binding
  • Protein Structure, Tertiary
  • RNA Interference
  • RNA, Small Interfering / genetics

Substances

  • Adaptor Proteins, Signal Transducing
  • CCAR2 protein, human
  • DNA Primers
  • Estrogen Receptor Modulators
  • Estrogen Receptor alpha
  • Ligands
  • Neoplasm Proteins
  • RNA, Small Interfering