Inhibition of HIV-1 multiplication by a modified U7 snRNA inducing Tat and Rev exon skipping

J Gene Med. 2007 May;9(5):323-34. doi: 10.1002/jgm.1027.


The HIV-1 regulatory proteins Tat and Rev are encoded by multiply spliced mRNAs that differ by the use of alternative 3' splice sites at the beginning of the internal exon. If these internal exons are skipped, the expression of these genes, and hence HIV-1 multiplication, should be inhibited. We have previously developed a strategy, based on antisense derivatives of U7 small nuclear RNA, that allows us to induce the skipping of an internal exon in virtually any gene. Here, we have successfully applied this approach to induce a partial skipping of the Tat, Rev (and Nef) internal exons. Three functional U7 constructs were subcloned into a lentiviral vector. Two of them strongly reduced the efficiency of lentiviral particle production compared to vectors carrying either no U7 insert or unrelated U7 cassettes. This defect could be partly or fully compensated by coexpressing Rev from an unspliced mRNA in the producing cell line. Upon stable transduction into CEM-SS or CEM T-lymphocytes, the most efficient of these constructs inhibits HIV-1 multiplication. Although the inhibition is not complete, it is more efficient in combination with another mechanism inhibiting HIV multiplication. Therefore, this new approach targeting HIV-1 regulatory genes at the level of pre-mRNA splicing, in combination with other antiviral strategies, may be a useful new tool in the fight against HIV/AIDS.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line
  • Exons*
  • Genes, Regulator / drug effects*
  • Genes, rev / drug effects
  • Genes, tat / drug effects
  • Genetic Vectors
  • HIV-1 / genetics*
  • Humans
  • RNA Splicing
  • RNA, Small Nuclear / pharmacology*
  • T-Lymphocytes / virology
  • Transduction, Genetic
  • Virus Replication / drug effects*
  • Virus Replication / genetics


  • RNA, Small Nuclear
  • U7 small nuclear RNA