Approaches to prevention of cardiovascular complications and events in diabetes mellitus

Drugs. 2007;67(7):997-1026. doi: 10.2165/00003495-200767070-00005.


Diabetes mellitus affects about 8% of the adult population. The estimated number of patients with diabetes, presently about 170 million people, is expected to increase by 50-70% within the next 25 years. Diabetes is an important component of the complex of 'common' cardiovascular risk factors, and is responsible for acceleration and worsening of atherothrombosis. Major cardiovascular events cause about 80% of the total mortality in diabetic patients. Diabetes also induces peculiar microangiopathic changes leading to diabetic nephropathy conducive to end-stage renal failure, and to diabetic retinopathy that may progress to vision loss and blindness. In terms of major cardiovascular events, coronary heart disease and ischaemic stroke are the main causes of morbidity and mortality in diabetic patients. Peripheral arterial disease frequently occurs, and is more likely to be conducive to critical limb ischaemia and amputation than in the absence of diabetes. Although there are a number of differences in the pathogenesis and clinical features of diabetic macroangiopathy and microangiopathy, these two entities often coexist and induce mutually worsening effects. Endothelial injury, dysfunction and damage are common starting points for both conditions. Causes of endothelial injury can be distinguished into those 'common' to nondiabetic atherothrombosis, such as hypertension, dyslipidaemia, smoking, hypercoagulability and platelet activation; and those more specific and in some cases 'unique' to diabetes and directly related to the metabolic derangement of the disease, such as (i) desulfation of glycosaminoglycans (GAGs) of the vascular matrix; (ii) formation of advanced glycation end-products (AGE) and their endothelial receptors (RAGE); (iii) oxidative and reductive stress; (iv) decline in nitric oxide production; (v) activation of the renin-angiotensin aldosterone system (RAAS); and (vi) endothelial inflammation caused by glucose, insulin, insulin precursors and AGE/RAGE. Prevention of major cardiovascular events with the antithrombotic agent aspirin (acetylsalicylic acid) is widely recommended, but reportedly underutilised in patients with diabetes. However, some data suggest that aspirin may be less effective than expected in preventing cardiovascular events and especially mortality in patients with diabetes, as well as in slowing progression of retinopathy. In contrast, a recent study found picotamide, a direct thromboxane inhibitor, to be superior to aspirin in diabetic patients. Clopidogrel was either equivalent or less active in diabetic versus nondiabetic patients, depending upon different clinical settings.Recent studies have shown that some GAG compounds are able to reduce micro- and macroalbuminuria in diabetic nephropathy, and hard exudates in diabetic retinopathy, but it is as yet unknown whether these agents also influence the natural history of microvascular complications of diabetes. Lifestyle changes and physical exercise are also essential in preventing cardiovascular events in diabetic patients. Available data on the control of the metabolic state and the main risk factors show that careful adjustment of blood sugar and glycated haemoglobin is more effective in counteracting microvascular damage than in preventing major cardiovascular events. The latter objective requires a more comprehensive approach to the whole constellation of risk factors both specific for diabetes and common to atherothrombosis. This approach includes lifestyle modifications, such as dietary changes and smoking cessation and the use of HMG-CoA reductase inhibitors (statins), which are able to correct the lipid status and to prevent major cardiovascular events independently of the baseline lipidaemic or cardiovascular status. Tight control of hypertension is essential to reduce not only major cardiovascular events but also microvascular complications. Among antihypertensive measures, blockade of the RAAS by means of ACE inhibitors or angiotensin II receptor antagonists recently emerged as a potentially polyvalent approach, not only for treating hypertension and reducing cardiovascular events, but also to prevent or reduce albuminuria, counteract diabetic nephropathy and lower the occurrence of new type 2 diabetes in individuals at risk.

Publication types

  • Review

MeSH terms

  • Cardiovascular Diseases* / etiology
  • Cardiovascular Diseases* / prevention & control
  • Cardiovascular Diseases* / therapy
  • Diabetes Complications / prevention & control*
  • Diabetes Mellitus / drug therapy*
  • Diabetes Mellitus / physiopathology*
  • Fibrinolytic Agents / therapeutic use
  • Humans
  • Hypoglycemic Agents / therapeutic use


  • Fibrinolytic Agents
  • Hypoglycemic Agents