Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jun 29;282(26):18810-8.
doi: 10.1074/jbc.M610762200. Epub 2007 May 9.

Differential requirement of P2X7 receptor and intracellular K+ for caspase-1 activation induced by intracellular and extracellular bacteria

Affiliations
Free article

Differential requirement of P2X7 receptor and intracellular K+ for caspase-1 activation induced by intracellular and extracellular bacteria

Luigi Franchi et al. J Biol Chem. .
Free article

Abstract

Interleukin-1beta (IL-1beta) is a pro-inflammatory cytokine that plays an important role in host defense and inflammatory diseases. The maturation and secretion of IL-1beta are mediated by caspase-1, a protease that processes pro-IL-1beta into biologically active IL-1beta. The activity of caspase-1 is controlled by the inflammasome, a multiprotein complex formed by NLR proteins and the adaptor ASC, that induces the activation of caspase-1. The current model proposes that changes in the intracellular concentration of K(+) potentiate caspase-1 activation induced by the recognition of bacterial products. However, the roles of P2X7 receptor and intracellular K(+) in IL-1beta secretion induced by bacterial infection remain unknown. Here we show that, in response to Toll-like receptor agonists such as lipopolysaccharide or infection with extracellular bacteria Staphylococcus aureus and Escherichia coli, efficient caspase-1 activation is only triggered by addition of ATP, a signal that promotes caspase-1 activation through depletion of intracellular K(+) caused by stimulation of the purinergic P2X7 receptor. In contrast, activation of caspase-1 that relies on cytosolic sensing of flagellin or intracellular bacteria did not require ATP stimulation or depletion of cytoplasmic K(+). Consistently, caspase-1 activation induced by intracellular Salmonella or Listeria was unimpaired in macrophages deficient in P2X7 receptor. These results indicate that, unlike caspase-1 induced by Toll-like receptor agonists and ATP, activation of the inflammasome by intracellular bacteria and cytosolic flagellin proceeds normally in the absence of P2X7 receptor-mediated cytoplasmic K(+) perturbations.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources