Non-B DNA conformations, mutagenesis and disease

Trends Biochem Sci. 2007 Jun;32(6):271-8. doi: 10.1016/j.tibs.2007.04.003. Epub 2007 May 9.


Recent discoveries have revealed that simple repeating DNA sequences, which are known to adopt non-B DNA conformations (such as triplexes, cruciforms, slipped structures, left-handed Z-DNA and tetraplexes), are mutagenic. The mutagenesis is due to the non-B DNA conformation rather than to the DNA sequence per se in the orthodox right-handed Watson-Crick B-form. The human genetic consequences of these non-B structures are approximately 20 neurological diseases, approximately 50 genomic disorders (caused by gross deletions, inversions, duplications and translocations), and several psychiatric diseases involving polymorphisms in simple repeating sequences. Thus, the convergence of biochemical, genetic and genomic studies has demonstrated a new paradigm implicating the non-B DNA conformations as the mutagenesis specificity determinants, not the sequences as such.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Base Sequence
  • DNA / chemistry*
  • DNA / genetics*
  • DNA, Bacterial / chemistry
  • DNA, Superhelical / chemistry
  • Genetic Diseases, Inborn / genetics
  • Humans
  • Mutagenesis / genetics*
  • Nucleic Acid Conformation*
  • Plasmids / genetics


  • DNA, Bacterial
  • DNA, Superhelical
  • DNA