Impact of non-Poissonian activity patterns on spreading processes
- PMID: 17501392
- DOI: 10.1103/PhysRevLett.98.158702
Impact of non-Poissonian activity patterns on spreading processes
Abstract
Halting a computer or biological virus outbreak requires a detailed understanding of the timing of the interactions between susceptible and infected individuals. While current spreading models assume that users interact uniformly in time, following a Poisson process, a series of recent measurements indicates that the intercontact time distribution is heavy tailed, corresponding to a temporally inhomogeneous bursty contact process. Here we show that the non-Poisson nature of the contact dynamics results in prevalence decay times significantly larger than predicted by the standard Poisson process based models. Our predictions are in agreement with the detailed time resolved prevalence data of computer viruses, which, according to virus bulletins, show a decay time close to a year, in contrast with the 1 day decay predicted by the standard Poisson process based models.
Similar articles
-
Epidemic spreading in scale-free networks.Phys Rev Lett. 2001 Apr 2;86(14):3200-3. doi: 10.1103/PhysRevLett.86.3200. Phys Rev Lett. 2001. PMID: 11290142
-
Spreading dynamics following bursty human activity patterns.Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Mar;83(3 Pt 2):036102. doi: 10.1103/PhysRevE.83.036102. Epub 2011 Mar 7. Phys Rev E Stat Nonlin Soft Matter Phys. 2011. PMID: 21517553
-
Modeling bursts and heavy tails in human dynamics.Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Mar;73(3 Pt 2):036127. doi: 10.1103/PhysRevE.73.036127. Epub 2006 Mar 24. Phys Rev E Stat Nonlin Soft Matter Phys. 2006. PMID: 16605618
-
Upflow anaerobic sludge blanket reactor--a review.Indian J Environ Health. 2001 Apr;43(2):1-82. Indian J Environ Health. 2001. PMID: 12397675 Review.
-
Mathematical and computer models in epidemiology.MD Comput. 1996 Mar-Apr;13(2):147-54. MD Comput. 1996. PMID: 8684277 Review. No abstract available.
Cited by
-
Predicting and controlling infectious disease epidemics using temporal networks.F1000Prime Rep. 2013;5:6. doi: 10.12703/P5-6. Epub 2013 Mar 4. F1000Prime Rep. 2013. PMID: 23513178 Free PMC article.
-
Constructing temporal networks with bursty activity patterns.Nat Commun. 2023 Nov 11;14(1):7311. doi: 10.1038/s41467-023-42868-1. Nat Commun. 2023. PMID: 37951967 Free PMC article.
-
Correlated bursts in temporal networks slow down spreading.Sci Rep. 2018 Oct 17;8(1):15321. doi: 10.1038/s41598-018-33700-8. Sci Rep. 2018. PMID: 30333572 Free PMC article.
-
Non-Markovian recovery makes complex networks more resilient against large-scale failures.Nat Commun. 2020 May 19;11(1):2490. doi: 10.1038/s41467-020-15860-2. Nat Commun. 2020. PMID: 32427821 Free PMC article.
-
Optimizing sentinel surveillance in temporal network epidemiology.Sci Rep. 2017 Jul 6;7(1):4804. doi: 10.1038/s41598-017-03868-6. Sci Rep. 2017. PMID: 28684777 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources