Objective: In this article, we present the basic principles of diffusion-weighted imaging (DWI) that can aid radiologists in the qualitative and quantitative interpretation of DW images. However, a detailed discussion of the physics of DWI is beyond the scope of this article. A short discussion ensues on the technical aspects of performing DWI in the body. The emerging applications of DWI for tumor detection, tumor characterization, distinguishing tumor tissue from nontumor tissue, and monitoring and predicting treatment response are highlighted. The challenges to widespread adoption of the technique for cancer imaging in the body are discussed.
Conclusion: DWI derives its image contrast from differences in the motion of water molecules between tissues. Such imaging can be performed quickly without the need for the administration of exogenous contrast medium. The technique yields qualitative and quantitative information that reflects changes at a cellular level and provides unique insights about tumor cellularity and the integrity of cell membranes. Recent advances enable the technique to be widely applied for tumor evaluation in the abdomen and pelvis and have led to the development of whole-body DWI.