Edge of chaos and prediction of computational performance for neural circuit models
- PMID: 17517489
- DOI: 10.1016/j.neunet.2007.04.017
Edge of chaos and prediction of computational performance for neural circuit models
Abstract
We analyze in this article the significance of the edge of chaos for real-time computations in neural microcircuit models consisting of spiking neurons and dynamic synapses. We find that the edge of chaos predicts quite well those values of circuit parameters that yield maximal computational performance. But obviously it makes no prediction of their computational performance for other parameter values. Therefore, we propose a new method for predicting the computational performance of neural microcircuit models. The new measure estimates directly the kernel property and the generalization capability of a neural microcircuit. We validate the proposed measure by comparing its prediction with direct evaluations of the computational performance of various neural microcircuit models. The proposed method also allows us to quantify differences in the computational performance and generalization capability of neural circuits in different dynamic regimes (UP- and DOWN-states) that have been demonstrated through intracellular recordings in vivo.
Similar articles
-
Fading memory and kernel properties of generic cortical microcircuit models.J Physiol Paris. 2004 Jul-Nov;98(4-6):315-30. doi: 10.1016/j.jphysparis.2005.09.020. Epub 2005 Nov 28. J Physiol Paris. 2004. PMID: 16310350
-
Motif distribution, dynamical properties, and computational performance of two data-based cortical microcircuit templates.J Physiol Paris. 2009 Jan-Mar;103(1-2):73-87. doi: 10.1016/j.jphysparis.2009.05.006. Epub 2009 Jun 11. J Physiol Paris. 2009. PMID: 19500669
-
Comment on "Adaptive Q-S (lag, anticipated, and complete) time-varying synchronization and parameters identification of uncertain delayed neural networks" [Chaos 16, 023119 (2006)].Chaos. 2007 Sep;17(3):038101; discussion 038102. doi: 10.1063/1.2749456. Chaos. 2007. PMID: 17903027
-
Computational and in vitro studies of persistent activity: edging towards cellular and synaptic mechanisms of working memory.Neuroscience. 2006 Apr 28;139(1):135-51. doi: 10.1016/j.neuroscience.2005.06.011. Epub 2005 Dec 6. Neuroscience. 2006. PMID: 16337341 Review.
-
Overview of facts and issues about neural coding by spikes.J Physiol Paris. 2010 Jan-Mar;104(1-2):5-18. doi: 10.1016/j.jphysparis.2009.11.002. Epub 2009 Nov 29. J Physiol Paris. 2010. PMID: 19925865 Review.
Cited by
-
Neural heterogeneity controls computations in spiking neural networks.Proc Natl Acad Sci U S A. 2024 Jan 16;121(3):e2311885121. doi: 10.1073/pnas.2311885121. Epub 2024 Jan 10. Proc Natl Acad Sci U S A. 2024. PMID: 38198531 Free PMC article.
-
SHIP: a computational framework for simulating and validating novel technologies in hardware spiking neural networks.Front Neurosci. 2024 Jan 8;17:1270090. doi: 10.3389/fnins.2023.1270090. eCollection 2023. Front Neurosci. 2024. PMID: 38264497 Free PMC article.
-
Sparse balance: Excitatory-inhibitory networks with small bias currents and broadly distributed synaptic weights.PLoS Comput Biol. 2022 Feb 9;18(2):e1008836. doi: 10.1371/journal.pcbi.1008836. eCollection 2022 Feb. PLoS Comput Biol. 2022. PMID: 35139071 Free PMC article.
-
Computational aspects of feedback in neural circuits.PLoS Comput Biol. 2007 Jan 19;3(1):e165. doi: 10.1371/journal.pcbi.0020165. Epub 2006 Oct 24. PLoS Comput Biol. 2007. PMID: 17238280 Free PMC article.
-
Optimizing echo state networks for continuous gesture recognition in mobile devices: A comparative study.Heliyon. 2024 Feb 29;10(5):e27108. doi: 10.1016/j.heliyon.2024.e27108. eCollection 2024 Mar 15. Heliyon. 2024. PMID: 38562498 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
