Support vector machine learning-based fMRI data group analysis
- PMID: 17524674
- PMCID: PMC2717002
- DOI: 10.1016/j.neuroimage.2007.03.072
Support vector machine learning-based fMRI data group analysis
Abstract
To explore the multivariate nature of fMRI data and to consider the inter-subject brain response discrepancies, a multivariate and brain response model-free method is fundamentally required. Two such methods are presented in this paper by integrating a machine learning algorithm, the support vector machine (SVM), and the random effect model. Without any brain response modeling, SVM was used to extract a whole brain spatial discriminance map (SDM), representing the brain response difference between the contrasted experimental conditions. Population inference was then obtained through the random effect analysis (RFX) or permutation testing (PMU) on the individual subjects' SDMs. Applied to arterial spin labeling (ASL) perfusion fMRI data, SDM RFX yielded lower false-positive rates in the null hypothesis test and higher detection sensitivity for synthetic activations with varying cluster size and activation strengths, compared to the univariate general linear model (GLM)-based RFX. For a sensory-motor ASL fMRI study, both SDM RFX and SDM PMU yielded similar activation patterns to GLM RFX and GLM PMU, respectively, but with higher t values and cluster extensions at the same significance level. Capitalizing on the absence of temporal noise correlation in ASL data, this study also incorporated PMU in the individual-level GLM and SVM analyses accompanied by group-level analysis through RFX or group-level PMU. Providing inferences on the probability of being activated or deactivated at each voxel, these individual-level PMU-based group analysis methods can be used to threshold the analysis results of GLM RFX, SDM RFX or SDM PMU.
Figures
Similar articles
-
Boost up the detection sensitivity of ASL perfusion fMRI through support vector machine.Conf Proc IEEE Eng Med Biol Soc. 2006;2006:1006-9. doi: 10.1109/IEMBS.2006.260382. Conf Proc IEEE Eng Med Biol Soc. 2006. PMID: 17946435
-
A hybrid SVM-GLM approach for fMRI data analysis.Neuroimage. 2009 Jul 1;46(3):608-15. doi: 10.1016/j.neuroimage.2009.03.016. Epub 2009 Mar 19. Neuroimage. 2009. PMID: 19303449 Free PMC article.
-
The impact of functional connectivity changes on support vector machines mapping of fMRI data.J Neurosci Methods. 2008 Jul 15;172(1):94-104. doi: 10.1016/j.jneumeth.2008.04.008. Epub 2008 Apr 16. J Neurosci Methods. 2008. PMID: 18499266
-
Multivoxel pattern analysis for FMRI data: a review.Comput Math Methods Med. 2012;2012:961257. doi: 10.1155/2012/961257. Epub 2012 Dec 6. Comput Math Methods Med. 2012. PMID: 23401720 Free PMC article. Review.
-
Multivariate pattern analysis of fMRI: the early beginnings.Neuroimage. 2012 Aug 15;62(2):852-5. doi: 10.1016/j.neuroimage.2012.03.016. Epub 2012 Mar 9. Neuroimage. 2012. PMID: 22425670 Free PMC article. Review.
Cited by
-
Brain at Work and in Everyday Life as the Next Frontier: Grand Field Challenges for Neuroergonomics.Front Neuroergon. 2020 Oct 27;1:583733. doi: 10.3389/fnrgo.2020.583733. eCollection 2020. Front Neuroergon. 2020. PMID: 38234310 Free PMC article. No abstract available.
-
Sex differences in resting-state functional networks in awake rats.Brain Struct Funct. 2023 Jul;228(6):1411-1423. doi: 10.1007/s00429-023-02657-4. Epub 2023 Jun 1. Brain Struct Funct. 2023. PMID: 37261489
-
Sex differences in resting-state functional networks in awake rats.Res Sq [Preprint]. 2023 Mar 16:rs.3.rs-2684325. doi: 10.21203/rs.3.rs-2684325/v1. Res Sq. 2023. PMID: 36993730 Free PMC article. Updated. Preprint.
-
Arterial Spin Labeling Perfusion MRI Signal Processing Through Traditional Methods and Machine Learning.Investig Magn Reson Imaging. 2022 Dec;26(4):220-228. doi: 10.13104/imri.2022.26.4.220. Epub 2022 Dec 31. Investig Magn Reson Imaging. 2022. PMID: 36687768 Free PMC article.
-
Explainable AI: A review of applications to neuroimaging data.Front Neurosci. 2022 Dec 1;16:906290. doi: 10.3389/fnins.2022.906290. eCollection 2022. Front Neurosci. 2022. PMID: 36583102 Free PMC article.
References
-
- Aguirre GK, Detre JA, Wang J. Perfusion fMRI for functional neuroimaging. International Review of Neurobiology. 2005;66:213–236. - PubMed
-
- Aguirre GK, Detre JA, Zarahn E, Alsop DC. Experimental design and the relative sensitivity of BOLD and perfusion fMRI. Neuroimage. 2002;15:488–500. - PubMed
-
- Aguirre GK, Nichols TE, Wang JJ. Human Brain Mapping Abstracts. New York: 2003. Permutation tests for perfusion fMRI; p. 776.
-
- Aguirre GK, Zarahn E, D’Esposito M. The variability of human BOLD hemodynamic responses. Neuroimage. 1998;8:360–369. - PubMed
-
- Allen DM. The relationship between variable selection and data augmentation and a method for prediction. Technometrics. 1974;16(1):125–127.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
