Mitochondrial multiplex real-time PCR as a source tracking method in fecal-contaminated effluents

Environ Sci Technol. 2007 May 1;41(9):3277-83. doi: 10.1021/es062912s.


Multiplex real-time PCR amplifying fecal mitochondrial DNA (mtDNA) combined with rapid, crude DNA preparations are promising additions to surface water source tracking methods. Amplification of eukaryotic mitochondrial DNA identifies the fecal source directly and can be used in conjunction with other intestinal microbial methods to characterize effluents. Species-specific primers and dual-labeled probes for human, swine, and bovine NADH dehydrogenase subunit 5 (ND5) genes were created for multiplex real-time PCR in feces and effluent slurries. The linear range of the multiplex assay was 10(2)-10(7) mtDNA copies for human, bovine, and swine effluent in combination (equal volumes). PCR amplification efficiencies for bovine, human, and swine mtDNA when assayed in combination were 93, 107, and 92% respectively. Linear regression correlation coefficients (r2) were 0.99 for all standard curves except for human mtDNA in combination (r2 = 0.95). Multiplex amplification of bovine, human, and swine mtDNA (ND5) exhibited no cross-reactions between the effluents from three species of interest. Also, no cross-reactions were observed with effluents of other vertebrates: sheep, goat, horse, dog, cat, Canada goose, broiler, layer, turkey, and tilapia. Performed as a blind test, the PCR operator was able to correctly identify all but two effluent challenge samples (10/12 or 83% correct) with no false positives (22/22 or 100% correct). The multiplex assay had a tendency to detect the species of highest mtDNA concentration only. Better detection of all three species in a combination of human, bovine, and swine effluents was accomplished by running each real-time PCR primer/ probe set singly. Real-time PCR detection limit was calculated as 2.0 x 10(6) mitochondrial copies or 0.2 g of human feces per 100 mL effluent. Some carry-over mtDNA PCR signal from consumed beef, but not pork, was found in feces of human volunteers.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cattle
  • DNA, Mitochondrial / analysis*
  • Environmental Monitoring / methods
  • Feces / chemistry*
  • Humans
  • Polymerase Chain Reaction
  • Swine
  • Waste Disposal, Fluid
  • Water Pollutants / analysis*


  • DNA, Mitochondrial
  • Water Pollutants