Dysferlin in membrane trafficking and patch repair

Traffic. 2007 Jul;8(7):785-94. doi: 10.1111/j.1600-0854.2007.00573.x. Epub 2007 Jun 5.

Abstract

The muscular dystrophies are a heterogeneous group of inherited disorders, defined by progressive muscle weakness and atrophy. Following the discovery of dystrophin, remarkable progress has been made in defining the molecular properties of proteins involved in the various dystrophies. This has underlined the importance of the dystrophin-associated protein complex as a cell membrane scaffold, providing structural stability to muscle cells (McNeil PL, Khakee R. Disruptions of muscle fiber plasma membranes. Role in exercise-induced damage. Am J Pathol 1992;140:1097-1109). While the dystrophies linked to loss of function of dystrophin and its associated proteins are caused by diminished membrane integrity, it is now believed that a new class of dystrophies arises because of a diminished capacity for rapid muscle membrane repair after injury. Dysferlin is the first identified member of a putative muscle-specific repair complex that permits rapid resealing of membranes disrupted by mechanical stress. Membrane resealing is a function conserved by most cells and is mediated by a mechanism closely resembling regulated, Ca2+-dependent exocytosis. A primary role for dysferlin in this pathway, as a Ca2+-regulated fusogen, has been suggested, and a number of candidate partner proteins have been identified. This review outlines the current understanding of the role of dysferlin in membrane repair and the evolving picture of dysferlin-related signaling pathways in muscle cell physiology and pathology.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Actinin / chemistry
  • Animals
  • Caenorhabditis elegans / metabolism
  • Calcium / metabolism
  • Caveolin 3 / metabolism
  • Cell Membrane / metabolism
  • Cell Survival
  • Dysferlin
  • Exocytosis
  • Humans
  • Membrane Proteins / biosynthesis*
  • Membrane Proteins / physiology*
  • Models, Biological
  • Muscle Proteins / biosynthesis*
  • Muscle Proteins / physiology*
  • Muscular Dystrophies / metabolism
  • Protein Structure, Tertiary
  • Protein Transport
  • Structure-Activity Relationship

Substances

  • Caveolin 3
  • DYSF protein, human
  • Dysferlin
  • Membrane Proteins
  • Muscle Proteins
  • PARVB protein, human
  • Actinin
  • Calcium