Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
, 9 (7), 1696-710

Fungal Transformations of Uranium Oxides

Affiliations
Comparative Study

Fungal Transformations of Uranium Oxides

M Fomina et al. Environ Microbiol.

Abstract

The biogeochemical activities of free-living and symbiotic fungi must be acknowledged in attempts to understand uranium cycling and dispersal in the environment. Although the near-surface geochemistry of uranium is very complex and a wide variety of mineral phases is known, uranium trioxide (UO3) and triuranium octaoxide (U(3)O(8)) can be used as well characterized models in the study of biotransformations. We have used a complex methodological approach involving advanced solid state speciation and scanning electron microscopy to study the ability of saprotrophic, ericoid and ectomycorrhizal fungi to transform these model oxides. This study has revealed that fungi exhibit a high uranium oxide tolerance, and possess the ability to solubilize UO3 and U(3)O(8) and to accumulate uranium within the mycelium to over 80 mg (g dry weight)(-1) biomass. X-ray absorption spectroscopy of uranium speciation within the biomass showed that in most of the fungi the uranyl ion was coordinated to phosphate ligands, but in ectomycorrhizal fungi mixed phosphate/carboxylate coordination was observed. Abundant uranium precipitates associated with phosphorus were found in the mycelium and encrusted the hyphae. Some of the fungi caused the biomineralization of well-crystallized uranyl phosphate minerals of the meta-autunite group. This is the first experimental evidence for fungal transformations of uranium solids and the production of secondary mycogenic uranium minerals.

Similar articles

See all similar articles

Cited by 5 PubMed Central articles

Publication types

Feedback