RNA regulons: coordination of post-transcriptional events

Nat Rev Genet. 2007 Jul;8(7):533-43. doi: 10.1038/nrg2111.


Recent findings demonstrate that multiple mRNAs are co-regulated by one or more sequence-specific RNA-binding proteins that orchestrate their splicing, export, stability, localization and translation. These and other observations have given rise to a model in which mRNAs that encode functionally related proteins are coordinately regulated during cell growth and differentiation as post-transcriptional RNA operons or regulons, through a ribonucleoprotein-driven mechanism. Here I describe several recently discovered examples of RNA operons in budding yeast, fruitfly and mammalian cells, and their potential importance in processes such as immune response, oxidative metabolism, stress response, circadian rhythms and disease. I close by considering the evolutionary wiring and rewiring of these combinatorial post-transcriptional gene-expression networks.

Publication types

  • Review

MeSH terms

  • Animals
  • Drosophila
  • Gene Expression Regulation
  • Gene Regulatory Networks*
  • Mammals
  • Models, Genetic
  • Operon
  • Protein Biosynthesis
  • RNA Processing, Post-Transcriptional*
  • RNA Splicing
  • RNA*
  • RNA-Binding Proteins / physiology
  • Regulon*
  • Saccharomycetales
  • Transcription, Genetic


  • RNA-Binding Proteins
  • RNA