Mice lacking P2Y2 receptors have salt-resistant hypertension and facilitated renal Na+ and water reabsorption

FASEB J. 2007 Nov;21(13):3717-26. doi: 10.1096/fj.07-8807com. Epub 2007 Jun 15.


Extracellular nucleotides (e.g., ATP) regulate many physiological and pathophysiological processes through activation of nucleotide (P2) receptors in the plasma membrane. Here we report that gene-targeted (knockout) mice that lack P2Y2 receptors have salt-resistant arterial hypertension in association with an inverse relationship between salt intake and heart rate, indicating intact baroreceptor function. Knockout mice have multiple alterations in their handling of salt and water: these include suppressed plasma renin and aldosterone concentrations, lower renal expression of the aldosterone-induced epithelial sodium channel alpha-ENaC, greater medullary expression of the Na-K-2Cl-cotransporter NKCC2, and greater furosemide-sensitive Na+ reabsorption in association with greater renal medullary expression of aquaporin-2 and vasopressin-dependent renal cAMP formation and water reabsorption despite similar vasopressin levels compared with wild type. Of note, smaller increases in plasma aldosterone were required to adapt renal Na+ excretion to restricted intake in knockout mice, suggesting a facilitation in renal Na+ retention. The results thus identify a previously unrecognized role for P2Y2 receptors in blood pressure regulation that is linked to an inhibitory influence on renal Na+ and water reabsorption. Based on these findings in knockout mice, we propose that a blunting in P2Y2 receptor expression or activity is a new mechanism for salt-resistant arterial hypertension.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Hypertension / genetics*
  • Hypertension / physiopathology
  • Kidney / physiopathology*
  • Mice
  • Mice, Inbred C57BL
  • Receptors, Purinergic P2 / genetics
  • Receptors, Purinergic P2 / physiology*
  • Receptors, Purinergic P2Y2
  • Sodium / metabolism*
  • Water / metabolism*


  • P2ry2 protein, mouse
  • Receptors, Purinergic P2
  • Receptors, Purinergic P2Y2
  • Water
  • Sodium