Metastasis suppressors and their roles in breast carcinoma

J Mammary Gland Biol Neoplasia. 2007 Sep;12(2-3):175-90. doi: 10.1007/s10911-007-9049-1.


Metastasis remains the most deadly aspect of cancer and still evades direct treatment. Clinically and experimentally, primary tumor development and metastasis are distinct processes-locally growing tumors can progress without the development of metastases. The discovery of endogenous molecules that exclusively inhibit metastasis suggests that metastasis is an amenable therapeutic target. By definition, metastasis suppressors inhibit metastasis without inhibiting tumorigenicity and are thus distinct from tumor suppressors. As the biology underlying functional mechanisms of metastasis suppressors becomes clearer, it is evident that metastasis suppressors could be harnessed as direct drug targets, prognostic markers, and to understand the fundamental biology of the metastatic process. Metastasis suppressors vary widely in their cellular localization: they are found in every cellular compartment and some are secreted. In general, metastasis suppressors appear to regulate selectively how cells respond to exogenous signals, by affecting signaling cascades which regulate downstream gene expression. This review briefly summarizes current functional and biochemical data on metastasis suppressors implicated in breast cancer. We also present a schematic integrating known mechanisms for these metastasis suppressors highlighting potential targets for therapeutic intervention.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Breast Neoplasms / classification
  • Breast Neoplasms / metabolism
  • Breast Neoplasms / pathology*
  • Humans
  • Neoplasm Metastasis / pathology*
  • Neoplasm Metastasis / prevention & control*
  • Signal Transduction