Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jan;30(1):81-92.
doi: 10.1016/j.neurobiolaging.2007.05.012. Epub 2007 Jun 22.

Epigallocatechin gallate (EGCG) suppresses beta-amyloid-induced neurotoxicity through inhibiting c-Abl/FE65 nuclear translocation and GSK3 beta activation

Affiliations

Epigallocatechin gallate (EGCG) suppresses beta-amyloid-induced neurotoxicity through inhibiting c-Abl/FE65 nuclear translocation and GSK3 beta activation

Chih-Li Lin et al. Neurobiol Aging. 2009 Jan.

Abstract

Alzheimer's disease (AD) is the most common neurodegenerative disease and is caused by an accumulation of A beta plaque deposits in the brains. Evidence is increasing that green tea flavonoids can protect cells from A beta-mediated neurotoxicity. However, the underlying mechanism remains unclear. Here, we used a human neuronal cell line MC65 conditional expression of an amyloid precursor protein fragment (APP-C99) to investigate the protection mechanism of epigallocatechin gallate (EGCG), the main constituent of green tea. We demonstrated that treatment with EGCG reduced the A beta levels by enhancing endogenous APP nonamyloidogenic proteolytic processing. Furthermore, EGCG also decreased nuclear translocation of c-Abl and blocked APP-C99-dependent GSK3 beta activation, and these inhibitory effects occurred through the interruption of c-Abl/Fe65 interaction. Our results indicated that the neuroprotective action of EGCG may take place through some mechanisms other than the promotion of APP nonamyloidogenic proteolysis, as was reported previously.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources