Uridine-rich small nuclear ribonucleoproteins (U snRNPs) are involved in key steps of pre-mRNA processing in the nucleus of eukaryotic cells. U snRNPs are enriched in the nucleus in discrete organelles that include speckles, Cajal bodies, and histone locus bodies. However, most U snRNPs are assembled in the cytoplasm, not in the nucleus. Despite extensive biochemical information, little is known about the spatial organization of U snRNPs in the cytoplasm. Here we show that U snRNPs in Drosophila are concentrated in discrete cytoplasmic structures, which we call U bodies, because they contain the major U snRNPs. In addition to snRNPs, U bodies contain essential snRNP assembly factors, suggesting that U bodies are sites for assembly or storage of snRNPs before their import into the nucleus. U bodies invariably associate with P bodies, which are involved in RNA surveillance and decay. Genetic disruption of P body components affects the organization of U bodies, suggesting that the two cytoplasmic bodies may cooperate in regulating aspects of snRNP metabolism. The identification of U bodies provides an opportunity to correlate specific biochemical steps of snRNP biogenesis with structural features of the cytoplasm.