Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jul 3;17(13):1109-15.
doi: 10.1016/j.cub.2007.05.036.

BAK1 and BKK1 regulate brassinosteroid-dependent growth and brassinosteroid-independent cell-death pathways

Affiliations
Free article

BAK1 and BKK1 regulate brassinosteroid-dependent growth and brassinosteroid-independent cell-death pathways

Kai He et al. Curr Biol. .
Free article

Abstract

Brassinosteroids (BRs) are phytosteroid hormones controlling various physiological processes critical for normal growth and development. BRs are perceived by a protein complex containing two transmembrane receptor kinases, BRASSINOSTEROID INSENSITIVE 1 (BRI1) and BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) [1-3]. BRI1 null mutants exhibit a dwarfed stature with epinastic leaves, delayed senescence, reduced male fertility, and altered light responses. BAK1 null mutants, however, only show a subtle phenotype, suggesting that functionally redundant proteins might be present in the Arabidopsis genome. Here we report that BAK1-LIKE 1 (BKK1) functions redundantly with BAK1 in regulating BR signaling. Surprisingly, rather than the expected bri1-like phenotype, bak1 bkk1 double mutants exhibit a seedling-lethality phenotype due to constitutive defense-gene expression, callose deposition, reactive oxygen species (ROS) accumulation, and spontaneous cell death even under sterile growing conditions. Our detailed analyses demonstrate that BAK1 and BKK1 have dual physiological roles: positively regulating a BR-dependent plant growth pathway, and negatively regulating a BR-independent cell-death pathway. Both BR signaling and developmentally controlled cell death are critical to optimal plant growth and development, but the mechanisms regulating early events in these pathways are poorly understood. This study provides novel insights into the initiation and crosstalk of the two signaling cascades.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources