Playing with carbon and silicon at the nanoscale

Nat Mater. 2007 Jul;6(7):479-90. doi: 10.1038/nmat1914.

Abstract

Because of its superior properties silicon carbide is one of the most promising materials for power electronics, hard- and biomaterials. In the solid phase, the electronic and optical properties are controlled by the stacking of double layers of Si and C atoms. In thin films, a change in the stacking order often requires stress, which can be achieved naturally in systems with nanometre length scale. For this reason, nanotubes, nanowires and clusters can be used as building blocks for the synthesis of novel materials. Furthermore, playing at the nanometre length scale enables the nature of the SiC bonding to be modified, which is of prime importance for atomic engineering of nanostructures. In this review, emphasis is placed on the theoretical principles associated with SiC cage-like clusters and experimental work resulting from them.