Herbicide 2,4-dichlorophenoxyacetic acid (2,4-D)-induced cytogenetic damage in human lymphocytes in vitro in presence of erythrocytes

Cell Biol Int. 2007 Nov;31(11):1316-22. doi: 10.1016/j.cellbi.2007.05.003. Epub 2007 May 21.

Abstract

The genotoxic effects of 2,4-D and its commercial derivative 2,4-D DMA were studied by measuring sister chromatid exchange (SCE), cell-cycle progression and mitotic index in human whole blood (WBC) and plasma leukocyte cultures (PLC). Concentrations of 10, 25, 50 and 100 microg herbicide/ml were used during 72 h. In WBC, a significant increase in SCE frequency was observed within the 10-50 microg 2,4-D/ml and 25-100 microg 2,4-D DMA/ml dose range. Contrarily, in PLC, none of the concentrations employed affected the SCEs frequency. A significant delay in cell proliferation was observed in WBC after treatments with 25 and 50 microg 2,4-D/ml and 50 and 100 microg 2,4-D DMA/ml. In PLC, only 100.0 microg 2,4-D/ml altered cell-cycle progression. For both chemicals, a progressive dose-related inhibition of mitotic activity was observed. The results demonstrated that the presence of erythrocytes in the culture system modulated the DNA and cellular damage inflicted by 2,4-D and 2,4-D DMA into human lymphocytes in vitro as well as both 2,4-D and 2,4-D DMA were more potent genotoxic agents in the presence of human red cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 2,4-Dichlorophenoxyacetic Acid / metabolism
  • 2,4-Dichlorophenoxyacetic Acid / pharmacology*
  • Adult
  • Cell Cycle / drug effects
  • Cells, Cultured
  • Erythrocytes / metabolism*
  • Herbicides / metabolism
  • Herbicides / pharmacology*
  • Humans
  • Lymphocytes / cytology*
  • Lymphocytes / drug effects
  • Lymphocytes / metabolism*
  • Male
  • Mutagenicity Tests
  • Sister Chromatid Exchange / drug effects

Substances

  • Herbicides
  • 2,4-Dichlorophenoxyacetic Acid