Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jul;92(7):897-904.
doi: 10.3324/haematol.10669.

Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in homing efficiency in NOD/SCID mice

Affiliations
Free article

Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in homing efficiency in NOD/SCID mice

Mingxia Shi et al. Haematologica. 2007 Jul.
Free article

Abstract

Background and objectives: The use of mesenchymal stem cells (MSC) for cell therapy relies on the capacity of these cells to home and engraft long-term into the appropriate target tissue(s). Homing of MSC to bone marrow (BM) post-transplantation can occur, but does so with only poor efficiency. This study was designed to evaluate the role of the SDF-1/CXCR4 axis in the homing of Flk1+ MSC derived from human fetal BM.

Design and methods: We investigated the expression of CXCR4 in Flk1+ MSC stimulated with a cytokine cocktail and explored their homing ability 24 hours after intravenous infusion into sublethally irradiated NOD/SCID mice. The peripheral blood was analyzed and human cells in recipients' BM were quantified from 2 to 6 months after transplantation.

Results: We found that Flk1+ MSC harbored intracellular CXCR4 which can be rapidly induced to the cell surface within a few hours. Short-term (24 hours) stimulation with the cocktail of cytokines resulted in up-regulation of both cell surface and intracellular CXCR4, increasing in vitro migration capacity to SDF-1 and homing to the BM of irradiated NOD/SCID mice. Moreover, compared to non-treated cells, transplantation of cytokine-treated Flk1+ MSC resulted in faster hematologic recovery and higher levels of donor chimerism in BM. Neutralization of CXCR4 significantly reduced homing and engraftment of Flk1+ MSCs in murine BM.

Interpretation and conclusions: These results suggest that the SDF-1/CXCR4 axis plays an important role in the regulation of motility of Flk1+ MSC. Increasing CXCR4 expression might be a potential strategy to improve engraftment of MSC in BM and accelerate the recovery of hematopoiesis.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

LinkOut - more resources