The molecular signature and cis-regulatory architecture of a C. elegans gustatory neuron
- PMID: 17606643
- PMCID: PMC1899474
- DOI: 10.1101/gad.1560107
The molecular signature and cis-regulatory architecture of a C. elegans gustatory neuron
Abstract
Taste receptor cells constitute a highly specialized cell type that perceives and conveys specific sensory information to the brain. The detailed molecular composition of these cells and the mechanisms that program their fate are, in general, poorly understood. We have generated serial analysis of gene expression (SAGE) libraries from two distinct populations of single, isolated sensory neuron classes, the gustatory neuron class ASE and the thermosensory neuron class AFD, from the nematode Caenorhabditis elegans. By comparing these two libraries, we have identified >1000 genes that define the ASE gustatory neuron class on a molecular level. This set of genes contains determinants of the differentiated state of the ASE neuron, such as a surprisingly complex repertoire of transcription factors (TFs), ion channels, neurotransmitters, and receptors, as well as seven-transmembrane receptor (7TMR)-type putative gustatory receptor genes. Through the in vivo dissection of the cis-regulatory regions of several ASE-expressed genes, we identified a small cis-regulatory motif, the "ASE motif," that is required for the expression of many ASE-expressed genes. We demonstrate that the ASE motif is a binding site for the C2H2 zinc finger TF CHE-1, which is essential for the correct differentiation of the ASE gustatory neuron. Taken together, our results provide a unique view of the molecular landscape of a single neuron type and reveal an important aspect of the regulatory logic for gustatory neuron specification in C. elegans.
Figures
Similar articles
-
Cis-regulatory mechanisms of left/right asymmetric neuron-subtype specification in C. elegans.Development. 2009 Jan;136(1):147-60. doi: 10.1242/dev.030064. Development. 2009. PMID: 19060335 Free PMC article.
-
Cis-regulatory mutations in the Caenorhabditis elegans homeobox gene locus cog-1 affect neuronal development.Genetics. 2009 Apr;181(4):1679-86. doi: 10.1534/genetics.108.097832. Epub 2009 Feb 2. Genetics. 2009. PMID: 19189954 Free PMC article.
-
The in vivo dissection of direct RFX-target gene promoters in C. elegans reveals a novel cis-regulatory element, the C-box.Dev Biol. 2012 Aug 15;368(2):415-26. doi: 10.1016/j.ydbio.2012.05.033. Epub 2012 Jun 5. Dev Biol. 2012. PMID: 22683808
-
Revisiting Neuronal Cell Type Classification in Caenorhabditis elegans.Curr Biol. 2016 Nov 21;26(22):R1197-R1203. doi: 10.1016/j.cub.2016.10.027. Curr Biol. 2016. PMID: 27875702 Review.
-
Chemical sensitivity in Caenorhabditis elegans.Cell Mol Life Sci. 2006 Jul;63(13):1510-22. doi: 10.1007/s00018-006-6114-7. Cell Mol Life Sci. 2006. PMID: 16732424 Free PMC article. Review.
Cited by
-
Identification of DVA interneuron regulatory sequences in Caenorhabditis elegans.PLoS One. 2013;8(1):e54971. doi: 10.1371/journal.pone.0054971. Epub 2013 Jan 28. PLoS One. 2013. PMID: 23383017 Free PMC article.
-
Human Endogenous Retroviruses as Gene Expression Regulators: Insights from Animal Models into Human Diseases.Mol Cells. 2021 Dec 31;44(12):861-878. doi: 10.14348/molcells.2021.5016. Mol Cells. 2021. PMID: 34963103 Free PMC article. Review.
-
Bidirectional temperature-sensing by a single thermosensory neuron in C. elegans.Nat Neurosci. 2008 Aug;11(8):908-15. doi: 10.1038/nn.2157. Nat Neurosci. 2008. PMID: 18660808 Free PMC article.
-
In silico analysis of the transcriptional regulatory logic of neuronal identity specification throughout the C. elegans nervous system.Elife. 2021 Jun 24;10:e64906. doi: 10.7554/eLife.64906. Elife. 2021. PMID: 34165430 Free PMC article.
-
Coordinated control of terminal differentiation and restriction of cellular plasticity.Elife. 2017 Apr 19;6:e24100. doi: 10.7554/eLife.24100. Elife. 2017. PMID: 28422646 Free PMC article.
References
-
- Bargmann C.I., Horvitz H.R., Horvitz H.R. Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron. 1991;7:729–742. - PubMed
-
- Benos P.V., Lapedes A.S., Stormo G.D., Lapedes A.S., Stormo G.D., Stormo G.D. Probabilistic code for DNA recognition by proteins of the EGR family. J. Mol. Biol. 2002;323:701–727. - PubMed
-
- Blackshaw S., Fraioli R.E., Furukawa T., Cepko C.L., Fraioli R.E., Furukawa T., Cepko C.L., Furukawa T., Cepko C.L., Cepko C.L. Comprehensive analysis of photoreceptor gene expression and the identification of candidate retinal disease genes. Cell. 2001;107:579–589. - PubMed
-
- Blacque O.E., Perens E.A., Boroevich K.A., Inglis P.N., Li C., Warner A., Khattra J., Holt R.A., Ou G., Mah A.K., Perens E.A., Boroevich K.A., Inglis P.N., Li C., Warner A., Khattra J., Holt R.A., Ou G., Mah A.K., Boroevich K.A., Inglis P.N., Li C., Warner A., Khattra J., Holt R.A., Ou G., Mah A.K., Inglis P.N., Li C., Warner A., Khattra J., Holt R.A., Ou G., Mah A.K., Li C., Warner A., Khattra J., Holt R.A., Ou G., Mah A.K., Warner A., Khattra J., Holt R.A., Ou G., Mah A.K., Khattra J., Holt R.A., Ou G., Mah A.K., Holt R.A., Ou G., Mah A.K., Ou G., Mah A.K., Mah A.K., et al. Functional genomics of the cilium, a sensory organelle. Curr. Biol. 2005;15:935–941. - PubMed
-
- Branicky R., Hekimi S., Hekimi S. Specification of muscle neurotransmitter sensitivity by a Paired-like homeodomain protein in Caenorhabditis elegans. Development. 2005;132:4999–5009. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous