Overcoming the classical multidrug resistance phenotype by adenoviral delivery of anti-MDR1 short hairpin RNAs and ribozymes

Int J Oncol. 2007 Aug;31(2):419-30.


Simultaneous resistance of cancer cells to multiple cytotoxic drugs, multidrug resistance (MDR), is the major limitation to the successful chemotherapeutic treatment of disseminated neoplasms. The 'classical' MDR phenotype is conferred by MDR1/P-glycoprotein (MDR1/P-gp) that is expressed in almost 50% of human cancers. Recent developments in the use of small interfering RNAs for specific inhibition of gene expression have highlighted their potential use as therapeutic agents. DNA cassettes encoding RNA polymerase III promoter-driven siRNA-like short hairpin RNAs (shRNAs) allow long-term expression of therapeutic RNAs in targeted cells. A variety of viral vectors have been used to deliver such cassettes to mammalian cells. In this study, the construction of different adenoviruses for anti-MDR1/P-gp shRNA delivery in different human multidrug-resistant cancer cells was investigated. The efficiency of the shRNAs was compared to adenoviral delivery of an anti-MDR1/P-gp ribozyme construct. It could be demonstrated that MDR1/P-gp mRNA and protein expression could be completely inhibited by adenoviral delivery of anti-MDR1/P-gp shRNAs. This downregulation in mRNA and protein expression was accompanied by a complete inhibition of the pump activity of MDR1/P-gp and a reversal of the multidrug-resistant phenotype. By application of adenoviral encoded anti-MDR1/P-gp ribozyme construct merely weak effects on gene expression were observed. In conclusion, the data demonstrate that adenoviral delivery of shRNAs can chemosensitize human cancer cells, that adenoviral delivery of shRNAs is much more effective than adenoviral delivery of ribozymes, and that adenovirus-based vectors can be very effective agents for efficient delivery of therapeutic RNA molecules.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • ATP Binding Cassette Transporter, Subfamily B
  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / genetics*
  • Adenoviridae / genetics
  • Cell Survival
  • Drug Resistance, Multiple*
  • Drug Resistance, Neoplasm*
  • Gene Expression Regulation, Neoplastic*
  • Genetic Vectors
  • Humans
  • Inhibitory Concentration 50
  • Models, Genetic
  • Phenotype
  • Promoter Regions, Genetic
  • RNA / chemistry*
  • RNA Interference
  • RNA, Catalytic / chemistry*


  • ABCB1 protein, human
  • ATP Binding Cassette Transporter, Subfamily B
  • ATP Binding Cassette Transporter, Subfamily B, Member 1
  • RNA, Catalytic
  • RNA