The chromatin-remodeling factor FACT contributes to centromeric heterochromatin independently of RNAi

Curr Biol. 2007 Jul 17;17(14):1219-24. doi: 10.1016/j.cub.2007.06.028. Epub 2007 Jul 5.

Abstract

Centromeres exert vital cellular functions in mitosis and meiosis. A specialized histone and other chromatin-bound factors nucleate a dynamic protein assembly that is required for the proper segregation of sister chromatids. In several organisms, including the fission yeast, Schizosaccharomyces pombe, the RNAi pathway contributes to the formation of silent chromatin in pericentromeric regions. Little is known about how chromatin-remodeling factors contribute to heterochromatic integrity and centromere function. Here we show that the histone chaperone and remodeling complex FACT is required for centromeric-heterochromatin integrity and accurate chromosome segregation. We show that Spt16 and Pob3 are two subunits of the S. pombe FACT complex. Surprisingly, yeast strains deleted for pob3+ are viable and alleviate gene silencing at centromeric repeats and at the silent mating-type locus. Importantly, like heterochromatin and RNAi pathway mutants, Pob3 null strains exhibit lagging chromosomes on anaphase spindles. Whereas the processing of centromeric RNA transcripts into siRNAs is maintained in Pob3 mutants, Swi6-association with the centromere is reduced. Our studies provide the first experimental evidence for a role of the RNA polymerase II cofactor FACT in heterochromatin integrity and in centromere function.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Centromere / metabolism*
  • Chromosomal Proteins, Non-Histone / metabolism
  • Chromosome Segregation / physiology*
  • Gene Expression Regulation, Fungal
  • Heterochromatin / metabolism*
  • Multiprotein Complexes / genetics
  • Multiprotein Complexes / metabolism
  • RNA Interference
  • Schizosaccharomyces / genetics
  • Schizosaccharomyces / metabolism*
  • Schizosaccharomyces pombe Proteins / genetics
  • Schizosaccharomyces pombe Proteins / metabolism*

Substances

  • Chromosomal Proteins, Non-Histone
  • Heterochromatin
  • Multiprotein Complexes
  • Schizosaccharomyces pombe Proteins
  • Swi6 protein, S pombe