Measuring spike train synchrony

J Neurosci Methods. 2007 Sep 15;165(1):151-61. doi: 10.1016/j.jneumeth.2007.05.031. Epub 2007 Jun 2.

Abstract

Estimating the degree of synchrony or reliability between two or more spike trains is a frequent task in both experimental and computational neuroscience. In recent years, many different methods have been proposed that typically compare the timing of spikes on a certain time scale to be optimized by the analyst. Here, we propose the ISI-distance, a simple complementary approach that extracts information from the interspike intervals by evaluating the ratio of the instantaneous firing rates. The method is parameter free, time scale independent and easy to visualize as illustrated by an application to real neuronal spike trains obtained in vitro from rat slices. In a comparison with existing approaches on spike trains extracted from a simulated Hindemarsh-Rose network, the ISI-distance performs as well as the best time-scale-optimized measure based on spike timing.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials / physiology*
  • Animals
  • Electrophysiology / methods*
  • Neurons / physiology*
  • Rats