Evolutionary history of mammalian transposons determined by genome-wide defragmentation

PLoS Comput Biol. 2007 Jul;3(7):e137. doi: 10.1371/journal.pcbi.0030137.


The constant bombardment of mammalian genomes by transposable elements (TEs) has resulted in TEs comprising at least 45% of the human genome. Because of their great age and abundance, TEs are important in comparative phylogenomics. However, estimates of TE age were previously based on divergence from derived consensus sequences or phylogenetic analysis, which can be unreliable, especially for older more diverged elements. Therefore, a novel genome-wide analysis of TE organization and fragmentation was performed to estimate TE age independently of sequence composition and divergence or the assumption of a constant molecular clock. Analysis of TEs in the human genome revealed approximately 600,000 examples where TEs have transposed into and fragmented other TEs, covering >40% of all TEs or approximately 542 Mbp of genomic sequence. The relative age of these TEs over evolutionary time is implicit in their organization, because newer TEs have necessarily transposed into older TEs that were already present. A matrix of the number of times that each TE has transposed into every other TE was constructed, and a novel objective function was developed that derived the chronological order and relative ages of human TEs spanning >100 million years. This method has been used to infer the relative ages across all four major TE classes, including the oldest, most diverged elements. Analysis of DNA transposons over the history of the human genome has revealed the early activity of some MER2 transposons, and the relatively recent activity of MER1 transposons during primate lineages. The TEs from six additional mammalian genomes were defragmented and analyzed. Pairwise comparison of the independent chronological orders of TEs in these mammalian genomes revealed species phylogeny, the fact that transposons shared between genomes are older than species-specific transposons, and a subset of TEs that were potentially active during periods of speciation.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Base Pairing
  • Base Sequence
  • Cattle
  • Chronobiology Phenomena / genetics
  • DNA Mutational Analysis / methods*
  • DNA Transposable Elements / genetics*
  • Dogs
  • Evolution, Molecular*
  • Genetic Speciation
  • Genome, Human
  • Haplorhini / genetics
  • Humans
  • Mammals / genetics*
  • Mice
  • Models, Genetic
  • Molecular Sequence Data
  • Phylogeny
  • Rats


  • DNA Transposable Elements