The mucin-like protein CD43 is excluded from the immune synapse, and regulates T-cell proliferation as well as T-cell migration. While the CD43 cytoplasmic domain is necessary for regulation of T-cell activation and proliferation, the mechanism via which CD43 regulates trafficking is not well defined. To investigate whether CD43 phosphorylation regulates its function in T cells, we used tandem mass spectrometry and identified Ser76 in murine CD43 as a previously unidentified site of basal phosphorylation. Interestingly, mutation of this single serine to alanine greatly diminishes T-cell trafficking to the lymph node, while CD43 exclusion and CD43-mediated regulation of T-cell proliferation remain intact. Furthermore, the CD43 extracellular domain was also required for T-cell trafficking, providing a hitherto unknown function for the extracellular domain, and suggesting that the extracellular domain may be required to transduce signals via the cytoplasmic domain. These data reveal a novel mechanism by which CD43 regulates T-cell function, and suggest that CD43 functions as a signaling molecule, sensing extracellular cues and transducing intracellular signals that modulate T-cell function.