Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Sep;293(3):C1112-9.
doi: 10.1152/ajpcell.00097.2007. Epub 2007 Jul 25.

Modulation of membrane channel currents by gap junction protein mimetic peptides: size matters

Affiliations
Free article

Modulation of membrane channel currents by gap junction protein mimetic peptides: size matters

Junjie Wang et al. Am J Physiol Cell Physiol. 2007 Sep.
Free article

Abstract

Connexin mimetic peptides are widely used to assess the contribution of nonjunctional connexin channels in several processes, including ATP release. These peptides are derived from various connexin sequences and have been shown to attenuate processes downstream of the putative channel activity. Yet so far, no documentation of effects of peptides on connexin channels has been presented. We tested several connexin and pannexin mimetic peptides and observed attenuation of channel currents that is not compatible with sequence specific actions of the peptides. Connexin mimetic peptides inhibited pannexin channel currents but not the currents of the channel formed by connexins from which the sequence was derived. Pannexin mimetic peptides did inhibit pannexin channel currents but also the channels formed by connexin 46. The same pattern of effects was observed for dye transfer, except that the inhibition levels were more pronounced than for the currents. The channel inhibition by peptides shares commonalities with channel effects of polyethylene glycol (PEG), suggesting a steric block as a mechanism. PEG accessibility is in the size range expected for the pore of innexin gap junction channels, consistent with a functional relatedness of innexin and pannexin channels.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources