Potassium current kinetics in bursting secretory neurons: effects of intracellular calcium

J Neurophysiol. 1991 Nov;66(5):1455-61. doi: 10.1152/jn.1991.66.5.1455.

Abstract

1. The kinetics of delayed rectifier (IK) and transient potassium (IA) currents and their modification by intracellular calcium ions in bursting X-organ neurons of the crayfish were studied with whole-cell patch-clamp technique. Activation and inactivation kinetics were analyzed according to Hodgkin and Huxley-type equations. 2. IK activates with sigmoidal time course at membrane potentials more positive than -38.4 +/- 3.5 (SD) mV (n = 5), and does not inactivate. The conductance through delayed rectifier channels (gK) is described by the equation gK = GKn2. 3. IA activates at membrane potentials close to the resting potential (-52.2 +/- 4.3 mV, n = 5) and, after a peak, inactivates completely. The conductance through A-channels (gA) can be described by the product of independent activation and inactivation parameters: gA = GAa4b. Both activation and inactivation processes are voltage and time dependent. 4. Steady-state activation of IK and IA as well as inactivation of IA can be described by Boltzmann distributions for single particles with valencies of 2.55 +/- 0.01 (n = 5), 1.60 +/- 0.25 (n = 5), and 3.87 +/- 0.39 (n = 3), respectively. 5. Increasing [Ca2+]i, we observed the following: 1) a considerable inactivation of IK during test pulses, 2) an increase of maximal conductance for IA, 3) a reduction of the valency of IA inactivation gating particle (from 3.87 to 2.27), 4) a reduction of the inactivation time constants of IA, and 5) a shift of the inactivation steady-state curve to more positive membrane potentials.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Astacoidea
  • Calcium / physiology*
  • Female
  • In Vitro Techniques
  • Kinetics
  • Male
  • Membrane Potentials / drug effects
  • Neurons / drug effects
  • Neurons / physiology*
  • Potassium Channels / drug effects
  • Potassium Channels / physiology*
  • Tetraethylammonium
  • Tetraethylammonium Compounds / pharmacology
  • Time Factors

Substances

  • Potassium Channels
  • Tetraethylammonium Compounds
  • Tetraethylammonium
  • Calcium