The thermodynamic quantities associated to the transformation from graphite to multiwalled carbon nanotubes (MWCNTs) were determined by electromotive force (emf) and differential scanning calorimetry (DSC) measurements. From the emf versus T data of galvanic cell Mo|Cr(3)C(2), CrF2, MWCNTs|CaF2 s.c.|Cr(3)C(2), CrF2, graphite|Mo with CaF2 as solid electrolyte, Delta(r)H(T) degrees= 8.25 +/- 0.09 kJ mol(-1) and Delta(r)S(T) degrees= 11.72 +/- 0.09 JK(-1) mol(-1) were found at average temperature T = 874 K. The transformation enthalpy was also measured by DSC of the Mn(7)C(3) formation starting from graphite or MWCNTs. Thermodynamic values at 298 K were calculated to be: Delta(r)H(298) degrees = 9.0 +/- 0.8 kJ mol(-1) as averaged value from both techniques and Delta(r)S(298) degrees approximately Delta(r)S(T) degrees. At absolute zero, the residual entropy of MWCNTs was estimated 11.63 +/- 0.09 JK(-1) mol(-1), and transformation enthalpy Delta(r)H(0) degrees approximately Delta(r)H(298) degrees. The latter agrees satisfactorily with the theoretical calculations for the graphite-MWCNTs transformation. On thermodynamic basis, the transformation becomes spontaneous above 704 +/- 13 K.