This review provides a neuroadaptive perspective regarding the role of the hormonal and brain stress systems in drug addiction with a focus on the changes that occur during the transition from limited access to drugs to long-term compulsive use of drugs. A dramatic escalation in drug intake with extended access to drug self-administration is characterized by a dysregulation of brain reward pathways. Hormonal studies using an experimenter-administered cocaine binge model and an escalation self-administration model have revealed large increases in ACTH and corticosterone in rats during an acute binge with attenuation during the chronic binge stage and a reactivation of the hypothalamic-pituitary-adrenal axis during acute withdrawal. The activation of the hypothalamic-pituitary-adrenal axis with cocaine appears to depend on feed-forward activation of the mesolimbic dopamine system. At the same time, escalation in drug intake with either extended access or dependence-induction produces an activation of the brain stress system's corticotropin-releasing factor outside of the hypothalamus in the extended amygdala, which is particularly evident during acute withdrawal. A model of the role of different levels of hormonal/brain stress activation in addiction is presented that has heuristic value for understanding individual vulnerability to drug dependence and novel treatments for the disorder.