Identification of genetic variants contributing to cisplatin-induced cytotoxicity by use of a genomewide approach

Am J Hum Genet. 2007 Sep;81(3):427-37. doi: 10.1086/519850. Epub 2007 Aug 1.


Cisplatin, a platinating agent commonly used to treat several cancers, is associated with nephrotoxicity, neurotoxicity, and ototoxicity, which has hindered its utility. To gain a better understanding of the genetic variants associated with cisplatin-induced toxicity, we present a stepwise approach integrating genotypes, gene expression, and sensitivity of HapMap cell lines to cisplatin. Cell lines derived from 30 trios of European descent (CEU) and 30 trios of African descent (YRI) were used to develop a preclinical model to identify genetic variants and gene expression that contribute to cisplatin-induced cytotoxicity in two different populations. Cytotoxicity was determined as cell-growth inhibition at increasing concentrations of cisplatin for 48 h. Gene expression in 176 HapMap cell lines (87 CEU and 89 YRI) was determined using the Affymetrix GeneChip Human Exon 1.0 ST Array. We identified six, two, and nine representative SNPs that contribute to cisplatin-induced cytotoxicity through their effects on 8, 2, and 16 gene expressions in the combined, Centre d'Etude du Polymorphisme Humain (CEPH), and Yoruban populations, respectively. These genetic variants contribute to 27%, 29%, and 45% of the overall variation in cell sensitivity to cisplatin in the combined, CEPH, and Yoruban populations, respectively. Our whole-genome approach can be used to elucidate the expression of quantitative trait loci contributing to a wide range of cellular phenotypes.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • African Continental Ancestry Group / genetics
  • Antineoplastic Agents / toxicity*
  • Cell Line
  • Cisplatin / toxicity*
  • European Continental Ancestry Group / genetics
  • Gene Expression
  • Genome, Human*
  • Genotype
  • Humans
  • Inhibitory Concentration 50
  • Oligonucleotide Array Sequence Analysis
  • Polymorphism, Single Nucleotide
  • Quantitative Trait Loci*


  • Antineoplastic Agents
  • Cisplatin

Associated data

  • GEO/GSE7761