Noise-limited frequency signal transmission in gene circuits
- PMID: 17704155
- PMCID: PMC2084236
- DOI: 10.1529/biophysj.107.110403
Noise-limited frequency signal transmission in gene circuits
Abstract
To maintain normal physiology, cells must properly process diverse signals arising from changes in temperature, pH, nutrient concentrations, and other factors. Many physiological processes are controlled by temporal aspects of oscillating signals; that is, these signals can encode information in the frequency domain. By modeling simple gene circuits, we analyze the impact of cellular noise on the fidelity and speed of frequency-signal transmission. We find that transmission of frequency signals is "all-or-none", limited by a critical frequency (f(c)). Signals with frequencies <f(c) are transmitted with high fidelity, whereas those with frequencies >f(c) are severely corrupted or completely lost in transmission. We argue that f(c) is an intrinsic property of a gene circuit and it varies with circuit parameters and additional feedback or feedforward regulation. Our results may have implications for understanding signal processing in natural biological networks and for engineering synthetic gene circuits.
Figures
Similar articles
-
Implementation Considerations, Not Topological Differences, Are the Main Determinants of Noise Suppression Properties in Feedback and Incoherent Feedforward Circuits.PLoS Comput Biol. 2016 Jun 3;12(6):e1004958. doi: 10.1371/journal.pcbi.1004958. eCollection 2016 Jun. PLoS Comput Biol. 2016. PMID: 27257684 Free PMC article.
-
Model-driven designs of an oscillating gene network.Biophys J. 2005 Dec;89(6):3873-83. doi: 10.1529/biophysj.105.064204. Epub 2005 Sep 23. Biophys J. 2005. PMID: 16183880 Free PMC article.
-
Processing Oscillatory Signals by Incoherent Feedforward Loops.PLoS Comput Biol. 2016 Sep 13;12(9):e1005101. doi: 10.1371/journal.pcbi.1005101. eCollection 2016 Sep. PLoS Comput Biol. 2016. PMID: 27623175 Free PMC article.
-
Noise in biological circuits.Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009 Mar-Apr;1(2):214-25. doi: 10.1002/wnan.22. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009. PMID: 20049792 Review.
-
Tweaking biological switches through a better understanding of bistability behavior.Curr Opin Biotechnol. 2008 Oct;19(5):475-81. doi: 10.1016/j.copbio.2008.08.010. Epub 2008 Oct 1. Curr Opin Biotechnol. 2008. PMID: 18804166 Free PMC article. Review.
Cited by
-
Fitness cost associated with cell phenotypic switching drives population diversification dynamics and controllability.Nat Commun. 2023 Oct 2;14(1):6128. doi: 10.1038/s41467-023-41917-z. Nat Commun. 2023. PMID: 37783690 Free PMC article.
-
Controlling microbial co-culture based on substrate pulsing can lead to stability through differential fitness advantages.PLoS Comput Biol. 2022 Oct 31;18(10):e1010674. doi: 10.1371/journal.pcbi.1010674. eCollection 2022 Oct. PLoS Comput Biol. 2022. PMID: 36315576 Free PMC article.
-
Frequency dependent growth of bacteria in living materials.Front Bioeng Biotechnol. 2022 Sep 8;10:948483. doi: 10.3389/fbioe.2022.948483. eCollection 2022. Front Bioeng Biotechnol. 2022. PMID: 36159663 Free PMC article.
-
Exploiting Information and Control Theory for Directing Gene Expression in Cell Populations.Front Microbiol. 2022 Apr 25;13:869509. doi: 10.3389/fmicb.2022.869509. eCollection 2022. Front Microbiol. 2022. PMID: 35547126 Free PMC article. Review.
-
Investigating the dynamics of microbial consortia in spatially structured environments.Nat Commun. 2020 May 15;11(1):2418. doi: 10.1038/s41467-020-16200-0. Nat Commun. 2020. PMID: 32415107 Free PMC article.
References
-
- Harmer, S. L., S. Panda, and S. A. Kay. 2001. Molecular bases of circadian rhythms. Annu. Rev. Cell Dev. Biol. 17:215–253. - PubMed
-
- Pourquie, O. 2003. The segmentation clock: converting embryonic time into spatial pattern. Science. 301:328–330. - PubMed
-
- Berridge, M. J., M. D. Bootman, and H. L. Roderick. 2003. Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4:517–529. - PubMed
-
- Berridge, M. J. 1997. The AM and FM of calcium signalling. Nature. 386:759–760. - PubMed
-
- Lahav, G., N. Rosenfeld, A. Sigal, N. Geva-Zatorsky, A. J. Levine, M. B. Elowitz, and U. Alon. 2004. Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat. Genet. 36:147–150. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
