Cortical region interactions and the functional role of apical dendrites
- PMID: 17715594
- DOI: 10.1177/1534582302001003003
Cortical region interactions and the functional role of apical dendrites
Abstract
The basal and distal apical dendrites of pyramidal cells occupy distinct cortical layers and are targeted by axons originating in different cortical regions. Hence, apical and basal dendrites receive information from distinct sources. Physiological evidence suggests that this anatomically observed segregation of input sources may have functional significance. This possibility has been explored in various connectionist models that employ neurons with functionally distinct apical and basal compartments. A neuron in which separate sets of inputs can be integrated independently has the potential to operate in a variety of ways not possible for the conventional neuron model, in which all inputs are treated equally. This article thus considers how functionally distinct apical and basal dendrites can contribute to the information-processing capacities of single neurons and, in particular, how information from different cortical regions could have disparate effects on neural activity and learning.
Similar articles
-
The Dendrites of CA2 and CA1 Pyramidal Neurons Differentially Regulate Information Flow in the Cortico-Hippocampal Circuit.J Neurosci. 2017 Mar 22;37(12):3276-3293. doi: 10.1523/JNEUROSCI.2219-16.2017. Epub 2017 Feb 17. J Neurosci. 2017. PMID: 28213444 Free PMC article.
-
Synchrony is stubborn in feedforward cortical networks.Nat Neurosci. 2003 Jun;6(6):543-4. doi: 10.1038/nn0603-543. Nat Neurosci. 2003. PMID: 12771956 Review. No abstract available.
-
Dynamic depolarization fields in the cerebral cortex.Trends Neurosci. 2002 Apr;25(4):183-90. doi: 10.1016/s0166-2236(00)02125-1. Trends Neurosci. 2002. PMID: 11998686 Review.
-
Supervised and unsupervised learning with two sites of synaptic integration.J Comput Neurosci. 2001 Nov-Dec;11(3):207-15. doi: 10.1023/a:1013776130161. J Comput Neurosci. 2001. PMID: 11796938
-
Morphological Characterization of a Cortico-cortical relay in the cat sensorimotor cortex.Cereb Cortex. 1997 Mar;7(2):100-9. doi: 10.1093/cercor/7.2.100. Cereb Cortex. 1997. PMID: 9087819
Cited by
-
Topological characterization of neuronal arbor morphology via sequence representation: I--motif analysis.BMC Bioinformatics. 2015 Jul 10;16:216. doi: 10.1186/s12859-015-0604-2. BMC Bioinformatics. 2015. PMID: 26156313 Free PMC article.
-
A Perspective on Cortical Layering and Layer-Spanning Neuronal Elements.Front Neuroanat. 2018 Jul 17;12:56. doi: 10.3389/fnana.2018.00056. eCollection 2018. Front Neuroanat. 2018. PMID: 30065634 Free PMC article. Review.
-
Are the Anterior and Mid-Cingulate Cortices Distinct in Rodents?Front Neuroanat. 2022 Jun 2;16:914359. doi: 10.3389/fnana.2022.914359. eCollection 2022. Front Neuroanat. 2022. PMID: 35721461 Free PMC article.
-
Neurobiological Causal Models of Language Processing.Neurobiol Lang (Camb). 2024 Apr 1;5(1):225-247. doi: 10.1162/nol_a_00133. eCollection 2024. Neurobiol Lang (Camb). 2024. PMID: 38645618 Free PMC article.
-
Using the Change Manager Model for the Hippocampal System to Predict Connectivity and Neurophysiological Parameters in the Perirhinal Cortex.Comput Intell Neurosci. 2016;2016:8625875. doi: 10.1155/2016/8625875. Epub 2015 Dec 27. Comput Intell Neurosci. 2016. PMID: 26819594 Free PMC article. Review.